1
|
Eckhardt B, Kaifie A. Bridging the knowledge gap! Health outcomes in informal e-waste workers. J Occup Med Toxicol 2024; 19:11. [PMID: 38622584 PMCID: PMC11017591 DOI: 10.1186/s12995-024-00410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Although several studies analyzed the impact of e-waste recycling on human health, most publications did not differ between e-waste workers and bystanders, such as residents. This could lead to an underestimation of health effects in workers. In addition, frequently reported surrogate findings do not properly reflect clinical significant health outcomes. The aim of this review was to analyze the direct health effects of informal e-waste recycling in informal e-waste workers. METHODS According to PRISMA guidelines, we systematically searched 3 databases (Embase®, PubMed®, Web of Science) for studies from low- and middle-income countries published in German or English between 1980 and 1 November 2021. Of the 2613 hits, 26 studies (cross-sectional, longitudinal and case-control studies) met the specified criteria and were included. We categorized the results into hormonal, respiratory, renal, cardiovascular, musculoskeletal health and general symptoms in informal e-waste workers. RESULTS Exposure to e-waste was associated with altered lipid metabolism, thyroid hormonal imbalances, impaired fertility, renal dysfunction, increased prevalence of respiratory symptoms, asthma, cardiac arrhythmias, hypertension, musculoskeletal pain, injuries in up to 89% and skin disorders in up to 87.5-100% of e-waste workers. CONCLUSION Due to inconsistent findings, weak associations or poor study quality, it has rarely been possible to establish a causal relationship between informal e-waste work and health effects, except for injuries or skin conditions. Besides high-quality studies, a collective national and international political focus on e-waste disposal is needed.
Collapse
Affiliation(s)
- Béla Eckhardt
- Institute for Occupational, Social, and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Andrea Kaifie
- Institute for Occupational, Social, and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Institute and Outpatient Unit for Occupational Social and Environmental Medicine, Medical Faculty, FAU Erlangen-Nuremberg, Germany.
| |
Collapse
|
2
|
Zhang S, Cheng Z, Cao Y, He F, Zhao L, Baqar M, Zhu H, Zhang T, Sun H. Aromatic amine antioxidants (AAs) and p-phenylenediamines-quinones (PPD-Qs) in e-waste recycling industry park: Occupational exposure and liver X receptors (LXRs) disruption potential. ENVIRONMENT INTERNATIONAL 2024; 186:108609. [PMID: 38579452 DOI: 10.1016/j.envint.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Recently, evidence of aromatic amine antioxidants (AAs) existence in the dust of the electronic waste (e-waste) dismantling area has been exposed. However, there are limited studies investigating occupational exposure and toxicity associated with AAs and their transformation products (p-phenylenediamines-quinones, i.e., PPD-Qs). In this study, 115 dust and 42 hand wipe samples collected from an e-waste recycling industrial park in central China were analyzed for 19 AAs and 6 PPD-Qs. Notably, the median concentration of ∑6PPD-Qs (1,110 ng/g and 1,970 ng/m2) was significantly higher (p < 0.05, Mann-Whitney U test) than that of ∑6PPDs (147 ng/g and 34.0 ng/m2) in dust and hand wipes. Among the detected analytes, 4-phenylaminodiphenylamine quinone (DPPD-Q) (median: 781 ng/g) and 1,4-Bis(2-naphthylamino) benzene quinone (DNPD-Q) (median: 156 ng/g), were particularly prominent, which were first detected in the e-waste dismantling area. Occupational exposure assessments and nuclear receptor interference ability, conducted through estimated daily intake (EDI) and molecular docking analysis, respectively, indicated significant occupational exposure to PPD-Qs and suggested prioritized Liver X receptors (LXRs) disruption potential of PPDs and PPD-Qs. The study provides the first evidence of considerable levels of AAs and PPD-Qs in the e-waste-related hand wipe samples and underscores the importance of assessing occupational exposure and associated toxicity effects.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuhao Cao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Feixiang He
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Wang M, Li Y, Lv Y, Tang J, Wei P, Lu P, Zhao L, Li G, Cao Z, An T. Quantitative characterization of resident' exposure to typical semi-volatile organic compounds (SVOCs) around a non-ferrous metal smelting plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133353. [PMID: 38154186 DOI: 10.1016/j.jhazmat.2023.133353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
To comprehensively characterize residents' exposure to major semi-volatile organic compounds (SVOCs), samples of indoor floor wipes, size-segregated airborne particles, gaseous air, food, and paired skin wipes were simultaneously collected from residential areas around a large non-ferrous metal smelting plant as compared with the control areas, and three typical SVOCs (including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and halogenated PAHs (HPAHs)) were determined. Comparison and correlation analysis among matrices indicated PAHs were the major contaminants emitted from metal smelting activities compared to HPAHs and PCBs, with naphthalene verified as the most important characteristic compound, and their accumulation on skin may be a comprehensive consequence of contact with floor dust and air. While patterns of human exposure pathways for the SVOCs were found to be clearly correlated to their vapor pressure, dermal absorption was the major contributor (51.1-76.3%) to total carcinogenic risk (TCR) of PAHs and HPAHs for surrounding residents, especially for low molecular weight PAHs, but dietary ingestion (98.6%) was the dominant exposure pathway to PCBs. The TCR of PAHs exceeded the acceptable level (1 × 10-4), implying smelting activities obviously elevated the health risk. This study will serve developing pertinent exposure and health risk prevention measures.
Collapse
Affiliation(s)
- Mengmeng Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyi Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yinyi Lv
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Ping Lu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Yang Y, Liang Z, Shen J, Chen H, Qi Z. Estimation of indoor soil/dust-skin adherence factors and health risks for adults and children in two typical cities in southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121889. [PMID: 37236583 DOI: 10.1016/j.envpol.2023.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Soil/dust (SD) skin adherence is key dermal exposure parameter used for calculating the health risk of dermal exposure to contaminants. However, few studies of this parameter have been conducted in Chinese populations. In this study, forearm SD samples were randomly collected using the wipe method from population in two typical cities in southern China as well as office staff in a fixed indoor environment. SD samples from the corresponding areas were also sampled. The wipes and SD were analyzed for tracer elements (aluminum, barium, manganese, titanium, and vanadium). The SD-skin adherence factors were 14.31 μg/cm2 for adults in Changzhou, 7.25 μg/cm2 for adults in Shantou, and 9.37 μg/cm2 for children in Shantou, respectively. Further, the recommended values for indoor SD-skin adherence factors for adults and children in Southern China were calculated to be 11.50 μg/cm2 and 9.37 μg/cm2, respectively, which were lower than the U.S. Environmental Protection Agency (USEPA) recommended values. And the SD-skin adherence factor value for the office staff was small (1.79 μg/cm2), but the data were more stable. In addition, PBDEs and PCBs in dust samples from industrial and residential area in Shantou were also determined, and health risks were assessed using the dermal exposure parameters measured in this study. None of the organic pollutants posed a health risk to adults and children via dermal contact. These studies emphasized the importance of localized dermal exposure parameters, and further studies should be conducted in the future.
Collapse
Affiliation(s)
- Yan Yang
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China.
| | - Zhiqin Liang
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Jiarui Shen
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Haojia Chen
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Zenghua Qi
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
5
|
Herrero M, González N, Rovira J, Marquès M, Domingo JL, Abalos M, Abad E, Nadal M. Health risk assessment of polychlorinated biphenyls (PCBs) in baby clothes. A preliminary study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119506. [PMID: 35605829 DOI: 10.1016/j.envpol.2022.119506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Clothes may contain a large range of chemical additives and other toxic substances, which may eventually pose a significant risk to human health. Since they are associated with pigments, polychlorinated biphenyls (PCBs) may be especially relevant. On the other hand, infants are very sensitive to chemical exposure and they may wear some contact and colored textiles for a prolonged time. Consequently, a specific human health risk assessment is required. This preliminary study was aimed at analyzing the concentrations of PCBs in ten bodysuits purchased in on-line stores and local retailers. The concentrations of 12 dioxin-like and 8 non-dioxin-like PCB congeners were determined by gas chromatography coupled to high resolution mass spectrometry, with detection limits ranging between 0.01 and 0.13 pg/g. The dermal absorption to PCBs of children at different ages (6 months, 1 year and 3 years old) was estimated, and the non-cancer and cancer risks were evaluated. Total levels of PCBs ranged from 74.2 to 412 pg/g, with a mean TEQ concentration of 13.4 pg WHO-TEQ/kg. Bodysuits made of organic cotton presented a total mean PCB concentration substantially lower than clothes made of regular cotton (11.0 vs. 15.8 pg WHO-TEQ/kg). The dermal absorption to PCBs for infants was calculated in around 3·10-5 pg WHO-TEQ/kg·day, regardless the age. This value is > 10,000-fold lower than the dietary intake of PCBs, either through breastfeeding or food consumption. Furthermore, this exposure value would not pose any health risks for the infants wearing those bodysuits. Anyhow, as it is a very preliminary study, this should be confirmed by analyzing larger sets of textile samples. Further investigations should be also focused on the co-occurrence of PCBs and other toxic chemicals (i.e., formaldehyde, bisphenols and aromatic amines) in infant clothes.
Collapse
Affiliation(s)
- Marta Herrero
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain.
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Manuela Abalos
- CSIC, Institute of Environmental Assessment and Water Research, Laboratory of Dioxins, C. Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Esteban Abad
- CSIC, Institute of Environmental Assessment and Water Research, Laboratory of Dioxins, C. Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
6
|
Ruan F, Liu C, Hu W, Ruan J, Ding X, Zhang L, Yang C, Zuo Z, He C, Huang J. Early life PCB138 exposure induces kidney injury secondary to hyperuricemia in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118977. [PMID: 35157936 DOI: 10.1016/j.envpol.2022.118977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 05/26/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants (POPs) that have adverse effects on human health. However, the long-term health effects and potential mechanism of neonatal exposure to PCBs are still unclear. In this study, nursing male mice exposed to PCB138 at 0.5, 5, and 50 μg/kg body weight (bw) from postnatal day (PND) 3 to PND 21 exhibited increased serum uric acid levels and liver uric acid synthase activity at 210 days of age. We also found an increased kidney somatic index in the 50 μg/kg group and kidney fibrosis in the 5 and 50 μg/kg groups. Mechanistically, PCB138 induced mitochondrial dysfunction and endoplasmic reticulum (ER) stress, which might have led to inflammatory responses, such as activation of the NF-κB (nuclear factor kappa-B) and NLRP3 (NOD-like receptor protein 3) pathways. The inflammatory response might regulate renal fibrosis and hypertrophy. In summary, this study reports a long-term effect of neonatal PCB exposure on uric acid metabolism and secondary nephrotoxicity and clarifies the underlying mechanism. Our work also indicates that early life pollutant exposure may be an important cause of diseases later in life.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Weiping Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|