1
|
Ko M, Jang T, Yoon S, Lee J, Choi JH, Choi JW, Park JA. Synthesis of recyclable and light-weight graphene oxide/chitosan/genipin sponges for the adsorption of diclofenac, triclosan, and microplastics. CHEMOSPHERE 2024; 356:141956. [PMID: 38604514 DOI: 10.1016/j.chemosphere.2024.141956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Emerging micropollutants, such as pharmaceuticals and microplastics (MPs), have become a pressing water environmental concern. The aim of this study is to synthesize chitosan sponges using graphene oxide (GO) and genipin (GP) for the removal of pharmaceuticals (diclofenac (DCF) and triclosan (TCS)) and MPs, verify their adsorption mechanisms, evaluate the effects of temperature, pH, and salinity on their adsorption capacities, and determine their reusability. The GO5/CS/GP sponge exhibited a macroporous nature (porosity = 95%, density = 32.6 mg/cm3). GO and cross-linker GP enhanced the adsorption of DCF, TCS, and polystyrene (PS) MPs onto the CS sponges. The adsorption of DCF, TCS, and PS MPs involved multiple steps: surface diffusion and pore diffusion of the sponge. The adsorption isotherms demonstrated that Langmuir model was the most fitted well model to explain adsorption of TCS (qm = 7.08 mg/g) and PS MPs (qm = 7.42 mg/g) on GO5/CS/GP sponge, while Freundlich model suited for DCF adsorption (qm = 48.58 mg/g). DCF adsorption was thermodynamically spontaneous and endothermic; however, the adsorption of TCS and PS MPs was exothermic (283-313 K). The optimal pH was 5.5-7 due to the surface charge of the GO5/CS/GP sponge (pHzpc = 5.76) and ionization of DCF, TCS, and PS MPs. As the salinity increased, DCF removal efficiency drastically decreased due to the weakening of electrostatic interactions; however, TCS removal efficiency remained stable because TCS adsorption was mainly caused by hydrophobic and π-π interactions rather than electrostatic interaction. The removal of PS MPs was enhanced by the electrostatic screening effects of high Na+ ions. PS nanoplastics (average size = 26 nm) were removed by the GO5/CS/GP sponge at a rate of 73.0%, which was better than that of PS MPs (41.5%). In addition, the GO5/CS/GP sponge could be recycled over five adsorption-desorption cycles.
Collapse
Affiliation(s)
- Mingi Ko
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Taesoon Jang
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Soyeong Yoon
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jooyoung Lee
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin-Hyuk Choi
- Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Woo Choi
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
2
|
MacKeown H, Scapuzzi C, Baglietto M, Benedetti B, Di Carro M, Magi E. Wastewater and seawater monitoring in Antarctica: Passive sampling as a powerful strategy to evaluate emerging pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171755. [PMID: 38494027 DOI: 10.1016/j.scitotenv.2024.171755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The Ross Sea, among the least human-impacted marine environments worldwide, recently became the first marine protected area in Antarctica. To assess the impact of the Italian research station Mario Zucchelli (MZS) on the surrounding waters, passive sampling - as well as spot sampling for comparison - took place in the effluent of the wastewater treatment plant (WWTP) and the receiving surface marine waters. Polar Organic Chemical Integrative Samplers (POCIS) were deployed for six consecutive 2-week periods from November to February in a reservoir collecting the wastewater effluent. Passive samplers were also deployed at shallow depth offshore from the wastewater effluent outlet from MZS for two separate 3-week periods (November 2021 and January 2022). Grab water samples were collected alongside each POCIS deployment, for comparison with passive sampling results. POCIS, used for the first time in Antarctica, demonstrated to be advantageous to estimate time-averaged concentrations in waters and the results were comparable to those obtained by repeated spot samplings. Among the 23 studied ECs - including drugs, UV-filters, perfluorinated substances, caffeine - 15 were detected in both grab and passive sampling in the WWTP effluent and followed similar concentration profiles in both types of sampling. High concentrations of caffeine, naproxen and ketoprofen in the dozens of μg L-1 were detected. Other compounds, including drugs and several UV filters, were detected down to sub- μg L-1 concentrations. In marine waters close to the effluent output, only traces of a drug (4.8 ng L-1) and two UV filters (up to 0.04 μg L-1) were quantified.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Matteo Baglietto
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
| |
Collapse
|
3
|
Wroński M, Trawiński J, Skibiński R. Antifungal drugs in the aquatic environment: A review on sources, occurrence, toxicity, health effects, removal strategies and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133167. [PMID: 38064946 DOI: 10.1016/j.jhazmat.2023.133167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Fungal infections pose a significant global health burden, resulting in millions of severe cases and deaths annually. The escalating demand for effective antifungal treatments has led to a rise in the wholesale distribution of antifungal drugs, which consequently has led to their release into the environment, posing a threat to ecosystems and human health. This article aims to provide a comprehensive review of the presence and distribution of antifungal drugs in the environment, evaluate their potential ecological and health risks, and assess current methods for their removal. Reviewed studies from 2010 to 2023 period have revealed the widespread occurrence of 19 various antifungals in natural waters and other matrices at alarmingly high concentrations. Due to the inefficiency of conventional water treatment in removing these compounds, advanced oxidation processes, membrane filtration, and adsorption techniques have been developed as promising decontamination methods.In conclusion, this review emphasizes the urgent need for a comprehensive understanding of the presence, fate, and removal of antifungal drugs in the environment. By addressing the current knowledge gaps and exploring future prospects, this study contributes to the development of strategies for mitigating the environmental impact of antifungal drugs and protecting ecosystems and human health.
Collapse
Affiliation(s)
- Michał Wroński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| |
Collapse
|
4
|
Šauer P, Vrana B, Escher BI, Grabic R, Toušová Z, Krauss M, von der Ohe PC, König M, Grabicová K, Mikušová P, Prokeš R, Sobotka J, Fialová P, Novák J, Brack W, Hilscherová K. Bioanalytical and chemical characterization of organic micropollutant mixtures in long-term exposed passive samplers from the Joint Danube Survey 4: Setting a baseline for water quality monitoring. ENVIRONMENT INTERNATIONAL 2023; 178:107957. [PMID: 37406370 PMCID: PMC10445204 DOI: 10.1016/j.envint.2023.107957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 07/07/2023]
Abstract
Monitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production. Two types of passive samplers, silicone rubber (SR) sheets for hydrophobic compounds and AttractSPETM HLB disks for hydrophilic compounds, were deployed at nine sites for approximately 100 days. The Danube River pollution was dominated by industrial compounds in SR samplers and by industrial compounds together with pharmaceuticals and personal care products in HLB samplers. Comparison of the Estimated Environmental Concentrations with Predicted No-Effect Concentrations revealed that at the studied sites, at least one (SR) and 4-7 (HLB) compound(s) exceeded the risk quotient of 1. We also detected AhR-mediated activity, oxidative stress response, peroxisome proliferator-activated receptor gamma-mediated activity, estrogenic, androgenic, and anti-androgenic activities using in vitro bioassays. A significant portion of the AhR-mediated and estrogenic activities could be explained by detected analytes at several sites, while for the other bioassays and other sites, much of the activity remained unexplained. The effect-based trigger values for estrogenic and anti-androgenic activities were exceeded at some sites. The identified drivers of mixture in vitro effects deserve further attention in ecotoxicological and environmental pollution research. This novel approach using long-term passive sampling provides a representative benchmark of pollution and effect potentials of chemical mixtures for future water quality monitoring of the Danube River and other large water bodies.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, 04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Zuzana Toušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Martin Krauss
- UFZ - Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, 04318 Leipzig, Germany
| | - Peter C von der Ohe
- UBA - German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, D-06844 Dessau-Roßlau, Germany
| | - Maria König
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, 04318 Leipzig, Germany
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Petra Mikušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Belidla 986/4a, 60300 Brno, Czech Republic
| | - Jaromír Sobotka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Pavla Fialová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, 04318 Leipzig, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, 60438 Frankfurt/Main, Germany
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
5
|
Canesini G, Galoppo GH, Tavalieri YE, Lazzarino GP, Stoker C, Luque EH, Ramos JG, Muñoz-de-Toro M. Disruption of the developmental programming of the gonad of the broad snouted caiman (Caiman latirostris) after in ovo exposure to atrazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40132-40146. [PMID: 36607581 DOI: 10.1007/s11356-022-25104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Environmental exposure to agrochemicals during early stages of development can induce subtle alterations that could permanently affect normal physiology. Previously, we reported that in ovo exposure to atrazine (ATZ) disrupts testicular histoarchitecture in postnatal caimans (Caiman latirostris). To assess whether such alterations are the result of disruption of gonadal developmental programming, this study aimed to evaluate the expression of histofunctional biomarkers (VASA, ER, PR, PCNA, and aromatase) and genes involved in gonadal development and differentiation (amh, sox-9, sf-1 and cyp19-a1) in the gonads of male and female caiman embryos and to assess the effect of ATZ exposure on these biomarkers and genes in the gonads of male embryos. Our results suggest that amh, aromatase and sox-9 play a role in sex determination and gonadal differentiation. In male caiman embryos, ATZ exposure increased aromatase expression and altered the temporal expression pattern of amh and sox-9 evidencing an ATZ-induced disruption of gonadal developmental programming. Since the effects of ATZ are consistent across all vertebrate classes, the ATZ-mediated disruptive effects here observed could be present in other vertebrate species.
Collapse
Affiliation(s)
- Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Germán H Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina.
| | - Yamil E Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Gisela P Lazzarino
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| |
Collapse
|
6
|
Aviezer Y, Lahav O. Removal of contaminants of emerging concern from secondary-effluent reverse osmosis retentates by continuous supercritical water oxidation- parametric study and conceptual design. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129379. [PMID: 35752047 DOI: 10.1016/j.jhazmat.2022.129379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
The continuous removal of TOC and the degradation efficiency of carbamazepine and 17β-estradiol were investigated using actual secondary municipal-effluent RO-retentate solutions. A specific set of operating parameters were applied within the supercritical water oxidizing conditions: temperature range 420-480 °C, 25.1 MPa, hydraulic retention time (HRT) of 1-2 min, excess oxidant molar-ratio of 3-10 and presence of a homogenous catalyst (IPA) at 50-100 mg/L. > 99% organic carbon mineralization, along with complete degradation of model pollutants, was observed at 450 °C/1 min/OC= 5-10 and 100 mgIPA/L. The outlet estrone concentration, 1.03 ± 1.14 ng/L, representing estrogenic pollutants, dropped to the "no effect" range. A model for a SCWO plant treating secondary-municipal-effluent-RO-retentate for a city of 100,000 capita-equivalent was developed, based on a shell & tube SCWO flow reactor, showing > 75% energy-efficiency. The model yielded that for the extreme case of a zero caloric-value feed-solution, the total OPEX and CAPEX would be < $6.0 ± 2.5 per m3 of secondary effluents, i.e., two orders of magnitude lower than the reported environmental shadow-price associated with CECs (contaminants of emerging concern). Further work is required on the continuous and efficient separation of the salt-matrix, which can lead to higher overall heat transfer coefficients and enable further reduction in capital costs.
Collapse
Affiliation(s)
- Yaron Aviezer
- Faculty of Civil and Environmental Engineering, Technion, Haifa 32000, Israel.
| | - Ori Lahav
- Faculty of Civil and Environmental Engineering, Technion, Haifa 32000, Israel.
| |
Collapse
|