1
|
Griffin JA, Li X, Lehmler HJ, Holland EB. Predicted versus observed activity of PCB mixtures toward the ryanodine receptor. Neurotoxicology 2024; 100:25-34. [PMID: 38065417 PMCID: PMC10842331 DOI: 10.1016/j.neuro.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) alter the activity of the ryanodine receptor (RyR), and this activity is linked to developmental neurotoxicity. Most work to date has focused on the activity of single congeners rather than relevant mixtures. The current study assessed the RyR activity of single congeners or binary, tertiary, and complex PCB mixtures. Observed mixture activity was then compared to the expected activity calculated using the concentration addition (CA) model or a RyR-specific neurotoxic equivalency scheme (rNEQ). The predictions of the CA model were consistent with the observed activity of binary mixtures at the lower portion of the concentration-response curve, supporting the additivity of RyR1 active PCBs. Findings also show that minimally active congeners can compete for the RyR1 binding site, and congeners that do not activate the RyR1 do not interfere with the activity of a full agonist. Complex PCB mixtures that mimic PCB profiles detected in indoor air, fish tissue, and the serum of mothers and children activated the RyR1 and displayed similar efficacy and potency regardless of varying congener profiles. Neither the CA model nor the rNEQ perfectly predicted the observed activity of complex mixtures, but predictions were often within one magnitude of change from the observed response. Importantly, PCB mixtures approximating profiles found in environmental samples or human serum displayed RyR1 activity at concentrations reported in published research. The work presented will aid in the development of risk assessment platforms for NDL PCBs and similar compounds toward RyR1 activation and related neurotoxicity.
Collapse
Affiliation(s)
- Justin A Griffin
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Erika B Holland
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA.
| |
Collapse
|
2
|
Simpson AM, Nutile SA, Hodgson OC, Russell AE, Keyes JD, Wood CC, Buckanovich RJ. Evaluating the trophic transfer of PCBs from fish to humans: Insights from a synergism of environmental monitoring and physiologically-based pharmacokinetic modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122419. [PMID: 37598933 DOI: 10.1016/j.envpol.2023.122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Accumulation of polychlorinated biphenyls (PCBs) within fish tissues has prompted many states to issue consumption advisories. In Pennsylvania such advisories suggest one meal per month for most game species harvested from Lake Erie; however, these advisories do not account for the emergent properties of regional PCB mixtures, and the downstream accumulation of PCB congeners into human tissues is poorly documented. This study aimed to demonstrate the utility of pairing environmental monitoring with pharmacokinetic modeling for the purpose of estimating dietary PCB exposure in humans. We qualified and quantified the PCB congeners present in the filets of five Lake Erie fish species and used these data to estimate exposure under consumption scenarios that matched or exceeded the advisories. Physiologically-based pharmacokinetic (PBPK) modeling was then employed to predict PCB accumulation within seven tissue compartments of a hypothetical man and woman over 10 years. Twenty-one congeners were detected between the five fish species at concentrations ranging from 56.0 to 411.7 ng/g. Predicted accumulation in human tissues varied based on tissue type, the species consumed, biological sex, and fish-consumption rate. Notably, steady-state concentrations were higher in fatty tissue compartments ("Fat" and "Liver") and across all tissues in women compared to men. This study serves as a preliminary blueprint for generating predictions of site-specific and tissue-specific exposure through the integration of environmental monitoring and pharmacokinetic modeling. Although the details may vary across applications, this simple approach could complement traditional exposure assessments for vulnerable communities in the Great Lakes region that continue to suffer from legacy contamination.
Collapse
Affiliation(s)
- Adam M Simpson
- School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA.
| | - Samuel A Nutile
- School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA
| | - Olivia C Hodgson
- School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA
| | - Ashley E Russell
- School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA
| | - Jeremiah D Keyes
- School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA
| | - Cody C Wood
- School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA
| | - Ronald J Buckanovich
- Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| |
Collapse
|
3
|
Han C, Wang Y, Liu P, Li P, Liu B, Ding N, Routledge MN, Liu Z, Zhang C. An aggregation-induced emission immunoassay for broad detection of polychlorinated biphenyls in chicken and crab. Anal Bioanal Chem 2022; 414:4963-4975. [PMID: 35606453 DOI: 10.1007/s00216-022-04123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) with multiple variants, which may be harmful to human health by absorption and bioaccumulation. To ensure food safety, it is necessary to develop multi-residue immunoassays for broad recognition of PCBs. In this study, by mimicking the generic core structure of PCBs, three haptens have been designed and synthesized for monoclonal antibody (mAb) generation. A carboxylic acid derivative of PCB80 was a hapten that induced a mAb with broad recognition of PCBs. The results of ELISA further identified that the mAb could recognize 11 different kinds of PCBs; half-maximal inhibition concentrations (IC50) ranged from 33.12 to 476.42 ng/mL. Subsequently, using aggregation-induced emission luminogen (AIEgen) nanobeads as the tracer for the output signal, the IC50 value of the various PCBs was improved to 6.38-252.1 ng/mL. The limit of detection (LOD) varied from 0.32 to 42.15 ng/mL. Recoveries of 76.90-95.74% and intra-assay coefficients of variation of 8.5-14.4% were obtained with spiked chicken and crab meat samples. Matrix interference was eliminated by dilution, and no false-positive and false-negative results were observed. The developed assay provides a simple, broad-spectrum, and sensitive tool for detecting PCBs, with high-throughput possibilities for large-scale screening of PCBs in food.
Collapse
Affiliation(s)
- Chang Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yulong Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Pengyan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Pan Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Beibei Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ning Ding
- Institute of Agricultural Products Quality Inspection and Testing Center, Suqian, 223801, China
| | - Michael N Routledge
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.,Jiangsu Education Department, International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Zhenjiang, 212013, China
| | - Zhengjiang Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cunzheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China. .,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|