1
|
Latif MT, Purhanudin N, Afandi NZM, Cambaliza MOL, Halim NDA, Hawari NSSL, Hien TT, Hlaing OMT, Jansz WRLH, Khokhar MF, Lestari P, Lung SCC, Naja M, Oanh NTK, Othman M, Salam A, Salim PM, Song CK, Fujinawa T, Tanimoto H, Yu LE, Crawford JH. In-depth analysis of ambient air pollution changes due to the COVID-19 pandemic in the Asian Monsoon region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173145. [PMID: 38768732 DOI: 10.1016/j.scitotenv.2024.173145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
The COVID-19 pandemic has given a chance for researchers and policymakers all over the world to study the impact of lockdowns on air quality in each country. This review aims to investigate the impact of the restriction of activities during the lockdowns in the Asian Monsoon region on the main criteria air pollutants. The various types of lockdowns implemented in each country were based on the severity of the COVID-19 pandemic. The concentrations of major air pollutants, especially particulate matter (PM) and nitrogen dioxide (NO2), reduced significantly in all countries, especially in South Asia (India and Bangladesh), during periods of full lockdown. There were also indications of a significant reduction of sulfur dioxide (SO2) and carbon monoxide (CO). At the same time, there were indications of increasing trends in surface ozone (O3), presumably due to nonlinear chemistry associated with the reduction of oxides of nitrogens (NOX). The reduction in the concentration of air pollutants can also be seen in satellite images. The results of aerosol optical depth (AOD) values followed the PM concentrations in many cities. A significant reduction of NO2 was recorded by satellite images in almost all cities in the Asian Monsoon region. The major reductions in air pollutants were associated with reductions in mobility. Pakistan, Bangladesh, Myanmar, Vietnam, and Taiwan had comparatively positive gross domestic product growth indices in comparison to other Asian Monsoon nations during the COVID-19 pandemic. A positive outcome suggests that the economy of these nations, particularly in terms of industrial activity, persisted during the COVID-19 pandemic. Overall, the lockdowns implemented during COVID-19 suggest that air quality in the Asian Monsoon region can be improved by the reduction of emissions, especially those due to mobility as an indicator of traffic in major cities.
Collapse
Affiliation(s)
- Mohd Talib Latif
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Noorain Purhanudin
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nur Zulaikha Mohd Afandi
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Maria Obiminda L Cambaliza
- Department of Physics, Ateneo de Manila University, Air Quality Dynamics Laboratory, Manila Observatory, Katipunan Ave., Quezon City, Metro Manila 1101, Philippines
| | - Nor Diana Abdul Halim
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Sarawak Branch, Samarahan 2, 94300 Kota Samarahan, Sarawak, Malaysia
| | | | - To Thi Hien
- Faculty of Environment, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | | | | | - Muhammad Fahim Khokhar
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Puji Lestari
- Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia
| | | | - Manish Naja
- Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, Uttarakhand 263129, India
| | - Nguyen Thi Kim Oanh
- Environmental Engineering and Management, Asian Institute of Technology, Pathumthani 12120, Thailand
| | - Murnira Othman
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Abdus Salam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka 100, Bangladesh
| | - Pauziyah Mohammad Salim
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Geomatic Science and Natural Resources, College of Built Environment (CBE), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Chang-Keun Song
- Department of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Tamaki Fujinawa
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hiroshi Tanimoto
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Liya E Yu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | | |
Collapse
|
2
|
Moosburger R, Manz K, Richter A, Mensink GBM, Loss J. Climate protection, health and other motives for active transport - results of a cross-sectional survey in Germany. BMC Public Health 2024; 24:1505. [PMID: 38840057 PMCID: PMC11151542 DOI: 10.1186/s12889-024-18609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/15/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Active transport- for example walking and bicycling to travel from place to place- may improve physical fitness and health and mitigate climate change if it replaces motorised transport. The aim of this study is to analyse the active transport behaviour of adults living in Germany, to investigate differences among population groups and to determine whether climate protection is a frequent motive for this behaviour. METHODS This study uses self-reported data of 4,971 adults who participated in a national health survey (German Health Update 2021), which was conducted as a telephone survey from July to December 2021. Associations between active transport behaviour and corresponding motives with sociodemographic and health-related variables were analysed using logistic regression models. RESULTS Of the adult population, 83% use active transport at least once a week. The frequency and duration of walking per week are significantly higher than those for bicycling (walking 214 min/week; bicycling 57 min/week). Those with a lower education level are less likely to practise active transport than those with a higher education level. Furthermore, women are less likely to use a bicycle for transport than men. Among those practising active transport, the most frequently mentioned motive is "is good for health" (84%) followed by "to be physically active" (74%) and "is good for the climate/environment" (68%). Women and frequent bicyclists (at least 4 days/week) mention climate protection as a motive more often than men and those bicycling occasionally. CONCLUSIONS The improvement of active transport, especially among people with lower education and women (for bicycling), may benefit from better insights into motives and barriers. Climate protection is an important motivator for practising active transport within the adult population living in Germany and should therefore have greater emphasis in behavioural change programmes.
Collapse
Affiliation(s)
- Ramona Moosburger
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, Berlin, Germany.
| | - Kristin Manz
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, Berlin, Germany
| | - Almut Richter
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, Berlin, Germany
| | - Gert B M Mensink
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, Berlin, Germany
| | - Julika Loss
- Department of Epidemiology and Health Monitoring, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
3
|
Kong H, Wu J, Li P. Impacts of active mobility on individual health mediated by physical activities. Soc Sci Med 2024; 348:116834. [PMID: 38574590 DOI: 10.1016/j.socscimed.2024.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/08/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Active mobility, encompassing walking and cycling for transportation, is a potential solution to health issues arising from inadequate physical activity in modern society. However, the extent of active mobility's impact on individual physical activity levels, and its association with health as mediated by physical activities, is not fully quantified. This study aims to clarify the direct relationship between active mobility usage and individual health, as well as the indirect relationship mediated by physical activity, with a focus on varying levels of physical activity intensity. Utilizing data from the 2017 U.S. National Household Travel Survey (NHTS), we employed Poisson regression to predict active mobility usage based on socio-demographic and household socio-economic characteristics. A Structural Equation Model (SEM) was then used to investigate the direct and indirect effects of active mobility on individual health, mediated by physical activity. We further segmented individuals according to their intensity of physical activity to examine how such effect differs between different levels of physical activity. The study demonstrates that active mobility usage positively correlates with both the amount and intensity of physical activity. The effect of active mobility on individual health includes a direct positive effect (29% for intensity, 67.7% for amount) and an indirect effect mediated by physical activity (71% for intensity, 32.3% for amount). Notably, the mediation effect of active mobility on health is more substantial in the context of vigorous physical activities compared to light or moderate activities. Our findings reveal a significant positive influence of active mobility on individual health, encompassing both direct and indirect effects mediated by physical activities. These results quantitatively underscore the health benefits of active mobility and suggest the importance of promoting active mobility as a strategy to improve public health.
Collapse
Affiliation(s)
- Hui Kong
- School of Architecture and Civil Engineering, Xiamen University, Xiamen, 361005, China; Fujian Key Laboratory of Digital Simulations for Coastal Civil Engineering, School of Architecture and Civil Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingyi Wu
- Advanced Institute of Information Technology, Peking University, Hangzhou, 311215, China
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou, 311215, China; Institute of Medical Technology, Peking University, Beijing, 100191, China.
| |
Collapse
|
4
|
Christidis P, Ulpiani G, Stepniak M, Vetters N. Research and innovation paving the way for climate neutrality in urban transport: Analysis of 362 cities on their journey to zero emissions. TRANSPORT POLICY 2024; 148:107-123. [PMID: 38433778 PMCID: PMC10896215 DOI: 10.1016/j.tranpol.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/21/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
The EU Mission on Climate Neutral and Smart Cities is an ambitious initiative aiming to involve a wide range of stakeholders and deliver 100 climate-neutral and smart cities by 2030. We analysed the information submitted in the expressions of interest by 362 candidate cities. The majority of the cities' strategies for climate neutrality include urban transport as a main sector and combine the introduction of new technologies with the promotion of public transport and active mobility. We combined the information from the EU Mission candidate cities with data from the CORDIS and TRIMIS databases, and applied a clustering algorithm to measure proximity to foci of H2020 funding. Our results suggest that preparedness for the EU Mission is correlated with research and innovation activities on transport and mobility. Horizon 2020 activities specific to transport and mobility significantly increased the likelihood of a city to be a candidate. Among the various transport technology research pathways, smart mobility appears to have a major role in the development of solutions for climate neutrality.
Collapse
Affiliation(s)
| | - Giulia Ulpiani
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Marcin Stepniak
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Nadja Vetters
- European Commission, Joint Research Centre (JRC), Brussels, Belgium
| |
Collapse
|
5
|
Prieto-Curiel R, Ospina JP. The ABC of mobility. ENVIRONMENT INTERNATIONAL 2024; 185:108541. [PMID: 38492498 DOI: 10.1016/j.envint.2024.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
The use of cars in cities has many negative impacts, including pollution, noise and the use of space. Yet, detecting factors that reduce the use of cars is a serious challenge, particularly across different regions. Here, we model the use of various modes of transport in a city by aggregating Active mobility (A), Public Transport (B) and Cars (C), expressing the modal share of a city by its ABC triplet. Data for nearly 800 cities across 61 countries is used to model car use and its relationship with city size and income. Our findings suggest that with longer distances and the congestion experienced in large cities, Active mobility and journeys by Car are less frequent, but Public Transport is more prominent. Further, income is strongly related to the use of cars. Results show that a city with twice the income has 37% more journeys by Car. Yet, there are significant differences across regions. For cities in Asia, Public Transport contributes to a substantial share of their journeys. For cities in the US, Canada, Australia, and New Zealand, most of their mobility depends on Cars, regardless of city size. In Europe, there are vast heterogeneities in their modal share, from cities with mostly Active mobility (like Utrecht) to cities where Public Transport is crucial (like Paris or London) and cities where more than two out of three of their journeys are by Car (like Rome and Manchester).
Collapse
Affiliation(s)
| | - Juan P Ospina
- Research in Spatial Economics (RiSE-Group), School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Colombia
| |
Collapse
|
6
|
Bhat TH, Farzaneh H, Toosty NT. Co-Benefit Assessment of Active Transportation in Delhi, Estimating the Willingness to Use Nonmotorized Mode and Near-Roadway-Avoided PM 2.5 Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14974. [PMID: 36429693 PMCID: PMC9691015 DOI: 10.3390/ijerph192214974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
This study aims to estimate the avoided mortalities and morbidities and related economic impacts due to adopting the nonmotorized transportation (NMT) policy in Delhi, India. To this aim, an integrated quantitative assessment framework is developed to estimate the expected environmental, health, and economic co-benefits from replacing personal motorized transport with NMT in Delhi, taking into account the inhabitants' willingness to use NMT (walking and cycling) mode. The willingness to accept NMT is estimated by conducting a cross-sectional survey in Delhi, which is further used to estimate the expected health benefits from both increased physical activity and near-roadway-avoided PM2.5 exposure in selected traffic areas in 11 major districts in Delhi. The value of a statistical life (VSL) and cost of illness methods are used to calculate the economic benefits of the avoided mortalities and morbidities from NMT in Delhi. The willingness assessment indicates that the average per capita time spent walking and cycling in Delhi is 11.054 and 2.255 min, respectively. The results from the application of the NMT in Delhi show the annual reduction in CO2 and PM2.5 to be 121.5 kilotons and 138.9 tons, respectively. The model estimates the expected co-benefits from increased physical activities and reduced PM2.5 exposure at 17,529 avoided cases of mortality with an associated savings of about USD 4870 million in Delhi.
Collapse
Affiliation(s)
- Tavoos Hassan Bhat
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
| | - Hooman Farzaneh
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
- Transdisciplinary Research and Education Center for Green Technologies, Kyushu University, Fukuoka 816-8580, Japan
| | - Nishat Tasnim Toosty
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
- Department of Statistics, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Cycling Tourism: A Literature Review to Assess Implications, Multiple Impacts, Vulnerabilities, and Future Perspectives. SUSTAINABILITY 2022. [DOI: 10.3390/su14158983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cycle tourists are increasingly prominent in the profile of world tourism and, in the light of the literature, it is essential, among other things, to examine more closely who they are, what their concerns and motivations are that generate the choice of a cycle tourism product, and, as a priority, the level of economic, social, and environmental impact they cause at destination. In this context, this literature review aims at identifying authors’ and publishers’ interest in cycle tourism, the positive and negative effects of this form of tourism on the economic environment (direct and indirect), as well as effects on the social environment (benefits and potential drawbacks for local communities, along with health benefits for practitioners) and, last but not least, the degree of vulnerability to economic crises generated by travel restrictions. The conclusions reported in this article, as they have been drawn from analyses and examples of best practice, based on natural and anthropogenic geographical conditions, will be prioritised as future research directions. The usefulness of this approach lies in the information with significant applied and novelty aspects, addressed to local, regional, and national authorities, cycling and cycle-tourism associations, and various private interested enterprises, with a view to promoting cycling for recreational purposes and implementing cycling/cycle-tourism infrastructure as a sustainable way of developing small towns and rural areas with tourism potential.
Collapse
|
8
|
Fair Models for Impartial Policies: Controlling Algorithmic Bias in Transport Behavioural Modelling. SUSTAINABILITY 2022. [DOI: 10.3390/su14148416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The increasing use of new data sources and machine learning models in transport modelling raises concerns with regards to potentially unfair model-based decisions that rely on gender, age, ethnicity, nationality, income, education or other socio-economic and demographic data. We demonstrate the impact of such algorithmic bias and explore the best practices to address it using three different representative supervised learning models of varying levels of complexity. We also analyse how the different kinds of data (survey data vs. big data) could be associated with different levels of bias. The methodology we propose detects the model’s bias and implements measures to mitigate it. Specifically, three bias mitigation algorithms are implemented, one at each stage of the model development pipeline—before the classifier is trained (pre-processing), when training the classifier (in-processing) and after the classification (post-processing). As these debiasing techniques have an inevitable impact on the accuracy of predicting the behaviour of individuals, the comparison of different types of models and algorithms allows us to determine which techniques provide the best balance between bias mitigation and accuracy loss for each case. This approach improves model transparency and provides an objective assessment of model fairness. The results reveal that mode choice models are indeed affected by algorithmic bias, and it is proven that the implementation of off-the-shelf mitigation techniques allows us to achieve fairer classification models.
Collapse
|