1
|
Lincoln P, Tjallingii R, Kosonen E, Ojala A, Abrook AM, Martin-Puertas C. Disruption of boreal lake circulation in response to mid-Holocene warmth; evidence from the varved sediments of Lake Nautajärvi, southern Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178519. [PMID: 39855124 DOI: 10.1016/j.scitotenv.2025.178519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/17/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Future climate projections are expected to have a substantial impact on boreal lake circulation regimes. Understanding lake sensitivity to warmer climates is therefore critical for mitigating potential ecological and societal impacts. The Holocene Thermal Maximum (HTM; ca 7-5 ka BP) provides a valuable analogue to investigate lake responses to warmer climates devoid of major anthropogenic influences. Here, we analyse the micro-X-ray core scanning profiles (μ-XRF) of the annually laminated (varved) sediments from Lake Nautajärvi (NAU-23) in southern Finland to elucidate changes in lake circulation and sedimentation patterns. Principal component analysis (PCA) identifies two key components in the geochemical data associated with the nature of the sediments, i.e. detrital vs organic sedimentation (PC1), and hypolimnetic oxidation (PC2). Our findings reveal that during the HTM, the lake became more sensitive to changes in oxygenation and mixing intensity. These changes were triggered by a warmer climate, which increased organic matter and redox sensitive metal solute concentrations in the water column, strengthening lake stratification and weakening dimictic circulation patterns. Superimposed on HTM weakened circulation are distinct phases of increased oxidation and iron-rich varve formation that do not happen when the background conditions are cooler (i.e. the early and late Holocene). This is driven by temporary strengthening of the mixing regime in response to climatic variability and storminess cycles across southern Scandinavia. These findings demonstrate that whilst warmer conditions weaken boreal lake circulation regimes, they can also make them increasingly vulnerable to short term oscillations in prevalent climatic conditions and weather patterns, which could have significant impacts on lake water quality and aquatic ecosystems. These findings underscore the non-stationary nature of lake sensitivity to short-term climatic variability and emphasize the potential for similar shifts to occur under future warming scenarios.
Collapse
Affiliation(s)
- Paul Lincoln
- Department of Geography, Royal Holloway University of London, Surrey, UK.
| | - Rik Tjallingii
- GFZ-German Research Centre for Geosciences. Telegrafenberg, Potsdam D-14473, Germany
| | - Emilia Kosonen
- Department of Geography and Geology, University of Turku, Turku, Finland
| | - Antti Ojala
- Department of Geography and Geology, University of Turku, Turku, Finland; Geological Survey of Finland, Espoo, Finland
| | - Ashley M Abrook
- School of Geography and Environmental Science, School of Ocean and Earth Science, University of Southampton, UK
| | | |
Collapse
|
2
|
Djerf H. Wetlands as a solution to water browning: A 3-year efficiency assessment of outdoor mesocosms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70008. [PMID: 39904377 PMCID: PMC11793944 DOI: 10.1002/wer.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 02/06/2025]
Abstract
Water browning is the phenomenon of increasing discoloration in lakes and water courses due to the leaching of organic matter from soils. This process has ecological, economic, and social implications, such as affecting light penetration, oxygen levels, nutrient cycling, drinking water quality, and recreational use. This study investigated the potential of wetlands as a natural solution to mitigate water browning by reducing organic matter and iron. Six mesocosms in pilot scale were set up and studied for 3 years for their efficiency to reduce water color, with sampling every 14th day. Parameters measured were the changes in water color, dissolved organic carbon, iron, pH, and conductivity over 3 years, under different hydrological and climatic conditions. The results showed that wetlands can decrease water browning by retaining organic matter and iron, especially in vegetated systems. This study showed that long retention times with vegetated shallow systems were needed to reduce the water color by 47%. The decrease of color was primarily due to reduction of iron that decreased by 66%, while the dissolved organic carbon (DOC) concentration decreased by only 6%. These findings highlight the potential of constructed wetlands as a valuable tool for improving water quality and mitigating the impacts of water browning, though further optimization of wetland design and integration with broader land-use strategies is needed to address this complex issue effectively. PRACTITIONER POINTS: Constructed wetlands can mitigate brownification, especially with long retention times and shallow vegetated wetlands. Iron reduction is more strongly correlated with colour reduction than with DOC reduction. Vegetated constructed wetlands reduced the colour concentration of inflow water by 47% after a 14-day retention time. Wetlands need a long retention time to reduce colour, and should be placed far upstream in the watershed. Vegetated systems may use alternative pathways, like biofilm formation, to reduce humic substances, independent of UV exposure.
Collapse
Affiliation(s)
- Henric Djerf
- Department of Environmental ScienceKristianstad UniversityKristianstadSweden
| |
Collapse
|
3
|
Lieke T, Jung-Schroers V, Rebl A. Freshwater browning as a hidden threat - Transcriptomic responses in fish gills exposed to fulvic acid. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137260. [PMID: 39874759 DOI: 10.1016/j.jhazmat.2025.137260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Human activities and climate change have significantly increased humic substances in freshwater ecosystems over the last few decades. This increase is particularly concerning during seasonal changes or after heavy rainfall, when concentrations can easily increase up to tenfold. This phenomenon, known as "browning," has unknown consequences for aquatic organisms. This study is the first to determine the effects of increasing humic substance concentrations on the transcriptomic and structural responses in the gills of rainbow trout (Oncorhynchus mykiss). Overall, 27 genes mainly involved in xenobiotic metabolism (cyp1a3, cyp1b1, pik3r6), immune response (rgs2, dll1, ccl19, acod1), and mucosal glycoprotein expression (muc2, prg4) were upregulated. No significant alterations were noted in gill morphology, although the molecular data strongly indicated a proinflammatory response. Our results highlight the risks posed by increasing humic substance concentrations for fish and aquatic ecosystems and emphasize the urgent need to implement effective monitoring and resource management strategies to address browning waters.
Collapse
Affiliation(s)
- Thora Lieke
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic.
| | - Verena Jung-Schroers
- University of Veterinary Medicine Hannover, Fish Disease Research Unit, Hannover, Germany
| | - Alexander Rebl
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| |
Collapse
|
4
|
McCaig ML, Kidd KA, Smenderovac EE, Perrotta BG, Emilson CE, Stastny M, Venier L, Emilson EJS. Response of stream habitat and microbiomes to spruce budworm defoliation: New considerations for outbreak management. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3020. [PMID: 39155464 DOI: 10.1002/eap.3020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/09/2024] [Accepted: 05/23/2024] [Indexed: 08/20/2024]
Abstract
Defoliation by eastern spruce budworm is one of the most important natural disturbances in Canadian boreal and hemi-boreal forests with annual area affected surpassing that of fire and harvest combined, and its impacts are projected to increase in frequency, severity, and range under future climate scenarios. Deciding on an active management strategy to control outbreaks and minimize broader economic, ecological, and social impacts is becoming increasingly important. These strategies differ in the degree to which defoliation is suppressed, but little is known about the downstream consequences of defoliation and, thus, the implications of management. Given the disproportionate role of headwater streams and their microbiomes on net riverine productivity across forested landscapes, we investigated the effects of defoliation by spruce budworm on headwater stream habitat and microbiome structure and function to inform management decisions. We experimentally manipulated a gradient of defoliation among 12 watersheds during a spruce budworm outbreak in the Gaspésie Peninsula, Québec, Canada. From May through October of 2019-2021, stream habitat (flow rates, dissolved organic matter [DOM], water chemistry, and nutrients), algal biomass, and water temperatures were assessed. Bacterial and fungal biofilm communities were examined by incubating six leaf packs for five weeks (mid-August to late September) in one stream reach per watershed. Microbiome community structure was determined using metabarcoding of 16S and ITS rRNA genes, and community functions were examined using extracellular enzyme assays, leaf litter decomposition rates, and taxonomic functional assignments. We found that cumulative defoliation was correlated with increased streamflow rates and temperatures, and more aromatic DOM (measured as specific ultraviolet absorbance at 254 nm), but was not correlated to nutrient concentrations. Cumulative defoliation was also associated with altered microbial community composition, an increase in carbohydrate biosynthesis, and a reduction in aromatic compound degradation, suggesting that microbes are shifting to the preferential use of simple carbohydrates rather than more complex aromatic compounds. These results demonstrate that high levels of defoliation can affect headwater stream microbiomes to the point of altering stream ecosystem productivity and carbon cycling potential, highlighting the importance of incorporating broader ecological processes into spruce budworm management decisions.
Collapse
Affiliation(s)
- Madison L McCaig
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
| | - Emily E Smenderovac
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | | | - Caroline E Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Michael Stastny
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| | - Lisa Venier
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Erik J S Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| |
Collapse
|
5
|
Long X, Zhang H, Liu H, Wang Z, Zeng L, Huang X, Chen X. Components of dissolved organic carbon in relation to environmental factors in lakes along an altitudinal gradient in central China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:846. [PMID: 39190084 DOI: 10.1007/s10661-024-13020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Dissolved organic carbon (DOC) is an important organic substance that affects biogeochemical processes and underwater light conditions in aquatic ecosystems. To explore altitudinal variations in DOC components and water quality, 66 surface water samples were collected along an altitudinal gradient (10-1857 m) in three regions of central China, including a montane region (Enshi Prefecture) and two floodplain regions (Dongting Lake Basin and Wuhan City). DOC components were measured using a three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy, in conjunction with fluorescence regional integration (FRI) and fluorescence indices. Generally, lakes at high elevations (Enshi Prefecture) had higher DOC concentrations (a mean value of 6.43 mg L-1) than floodplain lakes in Dongting Basin (4.51 mg L-1) and Wuhan City (3.89 mg L-1). Fluorescence index (FI, a range of 1.37-1.92) and biological index (BIX, a range of 0.47-0.74) indicated that DOC mainly originated from allochthonous sources in the three regions. Enshi Prefecture had relatively lower FI and BIX values, suggestive of a larger contribution of allochthonous carbon in this montane region in comparison with the floodplain regions. Humic-like substances were more abundant than other four fluorescent components, including tyrosine-like, tryptophan-like, fulvic acid-like, microbial-like substances. Spearman rank correlation analyses showed that tryptophane-like substances were positively correlated with K+, Mg2+, and Na+, while humic-like substances were negatively correlated with these cations. Taken together, the results can improve our understanding on altitudinal variations in DOC components and potential driving forces.
Collapse
Affiliation(s)
- Xuejing Long
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China
- Observation and Research Station of Wetland Critical Zone in Dajiuhu, Ministry of Natural Resources, Wuhan, 430078, China
| | - Huimin Zhang
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China
- Observation and Research Station of Wetland Critical Zone in Dajiuhu, Ministry of Natural Resources, Wuhan, 430078, China
| | - Hui Liu
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China
- Observation and Research Station of Wetland Critical Zone in Dajiuhu, Ministry of Natural Resources, Wuhan, 430078, China
| | - Zekun Wang
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China
- Observation and Research Station of Wetland Critical Zone in Dajiuhu, Ministry of Natural Resources, Wuhan, 430078, China
| | - Linghan Zeng
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China
- Observation and Research Station of Wetland Critical Zone in Dajiuhu, Ministry of Natural Resources, Wuhan, 430078, China
| | - Xianyu Huang
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China
- Observation and Research Station of Wetland Critical Zone in Dajiuhu, Ministry of Natural Resources, Wuhan, 430078, China
| | - Xu Chen
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China.
- Observation and Research Station of Wetland Critical Zone in Dajiuhu, Ministry of Natural Resources, Wuhan, 430078, China.
| |
Collapse
|
6
|
Paltsev A, Bergström AK, Vuorio K, Creed IF, Hessen DO, Kortelainen P, Vuorenmaa J, de Wit HA, Lau DCP, Vrede T, Isles PDF, Jonsson A, Geibrink E, Kahilainen KK, Drakare S. Phytoplankton biomass in northern lakes reveals a complex response to global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173570. [PMID: 38825201 DOI: 10.1016/j.scitotenv.2024.173570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Global change may introduce fundamental alterations in phytoplankton biomass and community structure that can alter the productivity of northern lakes. In this study, we utilized Swedish and Finnish monitoring data from lakes that are spatially (135 lakes) and temporally (1995-2019, 110 lakes) extensive to assess how phytoplankton biomass (PB) of dominant phytoplankton groups related to changes in water temperature, pH and key nutrients [total phosphorus (TP), total nitrogen (TN), total organic carbon (TOC), iron (Fe)] along spatial (Fennoscandia) and temporal (25 years) gradients. Using a machine learning approach, we found that TP was the most important determinant of total PB and biomass of a specific species of Raphidophyceae - Gonyostomum semen - and Cyanobacteria (both typically with adverse impacts on food-webs and water quality) in spatial analyses, while Fe and pH were second in importance for G. semen and TN and pH were second and third in importance for Cyanobacteria. However, in temporal analyses, decreasing Fe and increasing pH and TOC were associated with a decrease in G. semen and an increase in Cyanobacteria. In addition, in many lakes increasing TOC seemed to have generated browning to an extent that significantly reduced PB. The identified discrepancy between the spatial and temporal results suggests that substitutions of data for space-for-time may not be adequate to characterize long-term effects of global change on phytoplankton. Further, we found that total PB exhibited contrasting temporal trends (increasing in northern- and decreasing in southern Fennoscandia), with the decline in total PB being more pronounced than the increase. Among phytoplankton, G. semen biomass showed the strongest decline, while cyanobacterial biomass showed the strongest increase over 25 years. Our findings suggest that progressing browning and changes in Fe and pH promote significant temporal changes in PB and shifts in phytoplankton community structures in northern lakes.
Collapse
Affiliation(s)
- Aleksey Paltsev
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.
| | | | | | - Irena F Creed
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Dag Olav Hessen
- Centre of Biogeochemistry in the Anthropocene and Department of Bioscience, University of Oslo, Oslo, Norway
| | | | | | - Heleen A de Wit
- Centre of Biogeochemistry in the Anthropocene and Department of Bioscience, University of Oslo, Oslo, Norway; Norwegian Institute for Water Research, Oslo, Norway
| | - Danny C P Lau
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tobias Vrede
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Peter D F Isles
- Watershed Management Division, Vermont Department of Environmental Conservation, Montpelier, VT, USA
| | - Anders Jonsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Erik Geibrink
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | | | - Stina Drakare
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Kutser T, Soomets T. Satellite data is revealing long time changes in the world largest lakes. Sci Rep 2024; 14:14391. [PMID: 38909085 PMCID: PMC11193804 DOI: 10.1038/s41598-024-65250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Lakes are a crucial source of drinking water, provide ecological services from fisheries and aquaculture to tourism and are also a critical part of the global carbon cycle. Therefore, it is important to understand how lakes are changing over time. The ESA Ocean Colour Climate Change Initiative (OC-CCI) database allows to study changes in the largest lakes over 1997-2023 period. The Caspian Sea and ten next largest lakes were under investigation. Changes in the phytoplankton biomass (Chl-a), the concentration of particulate matter (bbp(555)), the colored dissolved organic matter, CDOM (adg(412)), and the light diffuse attenuation coefficient in water (Kd(490)) were analyzed. Both increasing and decreasing trends (or no significant trend at all) of studied parameters were observed in these lakes over the study period. In some of the Laurentian Great Lakes the changes in CDOM over the study period were found to be in accordance with the lake water level changes i.e. with the inflow from the catchment. There was difference between the trends of Chl-a and bbp(555) in lakes Michigan and Huron indicating that there may have been shift in phytoplankton community that took place around 2005. The study demonstrated that remote sensing products, like the ones created by ESA OC-CCI, are valuable tools to study behavior of large lakes ecosystems over time.
Collapse
Affiliation(s)
- Tiit Kutser
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618, Tallinn, Estonia.
| | - Tuuli Soomets
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618, Tallinn, Estonia
| |
Collapse
|
8
|
Vesamäki JS, Laine MB, Nissinen R, Taipale SJ. Plastic and terrestrial organic matter degradation by the humic lake microbiome continues throughout the seasons. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13302. [PMID: 38852938 PMCID: PMC11162827 DOI: 10.1111/1758-2229.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Boreal freshwaters go through four seasons, however, studies about the decomposition of terrestrial and plastic compounds often focus only on summer. We compared microbial decomposition of 13C-polyethylene, 13C-polystyrene, and 13C-plant litter (Typha latifolia) by determining the biochemical fate of the substrate carbon and identified the microbial decomposer taxa in humic lake waters in four seasons. For the first time, the annual decomposition rate including separated seasonal variation was calculated for microplastics and plant litter in the freshwater system. Polyethylene decomposition was not detected, whereas polystyrene and plant litter were degraded in all seasons. In winter, decomposition rates of polystyrene and plant litter were fivefold and fourfold slower than in summer, respectively. Carbon from each substrate was mainly respired in all seasons. Plant litter was utilized efficiently by various microbial groups, whereas polystyrene decomposition was limited to Alpha- and Gammaproteobacteria. The decomposition was not restricted only to the growth season, highlighting that the decomposition of both labile organic matter and extremely recalcitrant microplastics continues throughout the seasons.
Collapse
Affiliation(s)
- Jussi S. Vesamäki
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Miikka B. Laine
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Riitta Nissinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Sami J. Taipale
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
9
|
Räike A, Taskinen A, Härkönen LH, Kortelainen P, Lepistö A. Browning from headwaters to coastal areas in the boreal region: Trends and drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171959. [PMID: 38537816 DOI: 10.1016/j.scitotenv.2024.171959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/05/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Browning of freshwaters, mainly caused by increased terrestrial organic carbon loading, has been widely studied during the last decades. However, there are still uncertainties regarding both the extent of browning in different aquatic ecosystems and the actual importance of different driving forces and mechanisms. To refine understanding of the extent and causes of browning and its temporal variation, we gathered a comprehensive dataset including 746 Finnish water quality monitoring stations representing various waterbody types: streams, rivers, lakes, and coastal waters. Monotonic trend analyses revealed that TOC concentrations increased in all waterbody types during the study period from 1990 to 2020, whereas non-linear trends indicated that upward trends in TOC concentrations have substantially decreased since the mid-2000s. However, despite the upward trends levelling off, non-linear analyses also indicated decreases in TOC concentrations at only a few stations. As a result, the TOC contents of the majority of Finnish waterbody types in 2020 were at a higher level than in 1990. To examine the driving forces of increasing TOC concentrations, we selected 100 riverine catchments and linked the detected trends to 24 different drivers, including both hydrometeorological and catchment characteristics. The increased TOC concentrations in surface waters could be connected to diverse human impacts: hydrometeorological variables impacted by climate change, decreased acidic deposition, and land use in terms of peatland drainage. The importance of increased temperatures was emphasized, and its role as a driver of increased leaching of organic carbon in the forthcoming years is expected to grow with climate change.
Collapse
Affiliation(s)
- Antti Räike
- Finnish Environment Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland.
| | - Antti Taskinen
- Finnish Environment Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Laura H Härkönen
- Finnish Environment Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Pirkko Kortelainen
- Finnish Environment Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Ahti Lepistö
- Finnish Environment Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| |
Collapse
|
10
|
Lieke T, Stejskal V, Behrens S, Steinberg CEW, Meinelt T. Fulvic acid modulates mucosal immunity in fish skin: Sustainable aquaculture solution or environmental risk factor? JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133737. [PMID: 38359764 DOI: 10.1016/j.jhazmat.2024.133737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
This is the first study determining the effects of bath exposure to fulvic acid, a humic substance, on the skin mucosal immunity of rainbow trout (Oncorhynchus mykiss). Humic substances have recently been gaining attention for their increasing concentrations in aquatic ecosystems and their use as supplements in sustainable aquaculture. This study demonstrated that water exposure to fulvic acid at concentrations of 5 mg C/L and 50 mg C/L increased lysozyme and alkaline phosphatase activities in the mucus by approximately 2-fold and 2.5 to 3.2-fold, respectively. Furthermore, exposure to 50 mg C/L resulted in a 77.0% increase in mucosal immunoglobulin concentrations compared to the other groups. Importantly, all mucus samples demonstrated significant antibacterial activity against Yersinia ruckeri, with control mucus reducing bacterial growth by 44.5% and exposure to fulvic acid increasing this effect to 26.3%. Although these modulations show promise for application in aquaculture, alterations of the beneficial microbiota from long-term exposure in natural waters can be expected. Monitoring the rising concentrations of humic substances in natural water bodies is therefore urgently needed. Overall, this study represents the first investigation revealing the ability of humic substances to modulate skin mucosal immunity and the capacity to combat microorganisms.
Collapse
Affiliation(s)
- Thora Lieke
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic.
| | - Vlastimil Stejskal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
| | - Sascha Behrens
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Christian E W Steinberg
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Thomas Meinelt
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
11
|
Scharnweber K, Scholz C, Schippenbeil V, Milano S, Hühn D. Effects of mining activities on fish communities and food web dynamics in a lowland river. Ecol Evol 2024; 14:e11111. [PMID: 38476699 PMCID: PMC10928357 DOI: 10.1002/ece3.11111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Fish communities of streams and rivers might be substantially subsidized by terrestrial insects that fall into the water. Although such animal-mediated fluxes are increasingly recognized, little is known about how anthropogenic perturbations may influence the strength of such exchanges. Intense land use, such as lignite mining, may impact a river ecosystem due to the flocculation of iron (III) oxides, thus altering food web dynamics. We compared sections of the Spree River in North-East Germany that were greatly influenced by iron oxides with sections located downstream of a dam where passive remediation technologies are applied. Compared to locations downstream of the dam, the abundance of benthic macroinvertebrates at locations of high iron concentrations upstream of the dam was significantly reduced. Similarly, catch per unit effort of all fish was significantly higher in locations downstream of the dam compared to locations upstream of the dam, and the condition of juvenile and adult piscivorous pike Esox lucius was significantly lower in sections of high iron concentrations. Using an estimate of short-term (i.e., metabarcoding of the gut content) as well as longer-term (i.e., hydrogen stable isotopes) resource use, we could demonstrate that the three most abundant fish species, perch Perca fluviatilis, roach Rutilus rutilus, and bleak Alburnus alburnus, received higher contributions of terrestrial insects to their diet at locations of high iron concentration. In summary, lotic food webs upstream and downstream of the dam greatly differed in the overall structure with respect to the energy available for the highest tropic levels and the contribution of terrestrial insects to the diet of omnivorous fish. Therefore, human-induced environmental perturbations, such as river damming and mining activities, represent strong pressures that can alter the flow of energy between aquatic and terrestrial systems, indicating a broad impact on the landscape level.
Collapse
Affiliation(s)
- Kristin Scharnweber
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
- Ecological Research Station ReesUniversity of CologneRees‐BienenGermany
| | - Carolin Scholz
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
- Leibniz Institute for Zoo and Wildlife Research, Evolutionary EcologyBerlinGermany
| | - Victor Schippenbeil
- Faculty of Mathematics and Science II, Geography DepartmentHumboldt‐Universität zu BerlinBerlinGermany
| | - Stefania Milano
- Leibniz Institute for Zoo and Wildlife Research, Evolutionary EcologyBerlinGermany
| | - Daniel Hühn
- Potsdam Institute of Inland FisheriesPotsdamGermany
| |
Collapse
|
12
|
Holopainen S, Jaatinen K, Laaksonen T, Lindén A, Nummi P, Piha M, Pöysä H, Toivanen T, Väänänen V, Alhainen M, Lehikoinen A. Anthropogenic bottom-up and top-down impacts on boreal breeding waterbirds. Ecol Evol 2024; 14:e11136. [PMID: 38469038 PMCID: PMC10925514 DOI: 10.1002/ece3.11136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 03/13/2024] Open
Abstract
Wetland habitats are changing under multiple anthropogenic pressures. Nutrient leakage and pollution modify physico-chemical state of wetlands and affect the ecosystem through bottom-up processes, while alien predators affect the ecosystems in a top-down manner. Boreal wetlands are important breeding areas for several waterbird species, the abundances of which potentially reflect both bottom-up and top-down ecosystem processes. Here, we use long-term national monitoring data gathered from c. 130 waterbird breeding sites in Finland from the 1980s to the 2020s. We hypothesised that the physico-chemical state of the waters and increasing alien predator abundance both play a role in steering the waterbird population trends. We set out to test this hypothesis by relating population changes of 17 waterbird species to changes in water chemistry and to regional alien predator indices while allowing species-specific effects to vary with foraging niche (dabblers, invertivore divers, piscivorous divers, herbivores), nesting site, female mass and habitat (oligotrophic, eutrophic). We found niche and nesting site-specific, habitat-dependent changes in waterbird numbers. While the associations with higher phosphorus levels and browning water were in overall positive at the oligotrophic lakes, the numbers of invertivore and piscivore diving ducks were most strongly negatively associated with higher phosphorus levels and browning water at the eutrophic lakes. Furthermore, increased pH levels benefitted piscivores. Invertivore diving duck species nesting on the wetlands had declined most on sites with high alien predator indices. Large herbivorous species and species preferring oligotrophic lakes seem to be successful. We conclude that the large-scale breeding waterbird decline in Finland is closely connected to both bottom-up and top-down processes, where negative associations are emphasised especially at eutrophic lakes. Niche-, nest site- and habitat-specific management actions are required to conserve declining waterbird populations. Managing wetlands on catchments level together with alien predator control may provide important approaches to future wetland management.
Collapse
Affiliation(s)
- Sari Holopainen
- Luonnontieteellinen Keskusmuseo, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
- Present address:
Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| | - Kim Jaatinen
- Nature and Game Management Trust FinlandDegerbyFinland
| | | | | | - Petri Nummi
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| | - Markus Piha
- Natural Resources Institute Finland LukeHelsinkiFinland
| | - Hannu Pöysä
- Natural Resources Institute Finland LukeJoensuuFinland
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | | | | | | | - Aleksi Lehikoinen
- Luonnontieteellinen Keskusmuseo, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
13
|
Chen X, Bai X, Langdon PG, Piątek J, Wołowski K, Peng J, Zheng T, Cao Y. Asynchronous multitrophic level regime shifts show resilience to lake browning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168798. [PMID: 38016557 DOI: 10.1016/j.scitotenv.2023.168798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Lake browning is widespread due to increased supply of dissolved organic carbon under climate warming and nitrogen deposition. However, multitrophic level responses to lake browning are poorly understood. Our study aims to explore such responses across multitrophic levels based on sedimentary records of diatoms, chrysophyte stomatocysts and chironomids in a remote headwater lake in the Three Gorges Reservoir region, central China. Although all biotic proxies were analysed in the same core, the timing of shifts in chironomids (1886 ± 18 CE) preceded that in chrysophyte stomatocysts (∼1914 ± 10 CE) and diatoms (∼1941 ± 6 CE). Shifts in biotic communities were closely linked to rising temperature, δ15N depletion (a proxy for nitrogen deposition), δ13C enrichment (a proxy for littoral moss expansion), as well as biotic interactions, whereas the relative importance of the driving forces varied among the three biotic groups. Our results suggest that the zoobenthos grazing effect might be more important than bottom-up pathways in humic environments. Additionally, the coexistence of benthic, littoral and pelagic algae after the 1950s suggested that mixotrophic chrysophytes could reduce lake browning through heterotrophic processes and sustain the ecological equilibrium between littoral, pelagic and benthic productivity. Therefore, lake browning ecosystem regime shifts require analyses of multiple trophic levels. Our results suggest that heterotrophy may become more important in lake ecosystem carbon cycling with water brownification in Mulong Lake, as well as similar montane lakes.
Collapse
Affiliation(s)
- Xu Chen
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China; School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK.
| | - Xue Bai
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
| | - Peter G Langdon
- School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
| | - Jolanta Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - Konrad Wołowski
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - Jia Peng
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
| | - Ting Zheng
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
| | - Yanmin Cao
- School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK; College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
14
|
Wall CB, Spiegel CJ, Diaz EM, Tran CH, Fabiani A, Broe TY, Perez-Coronel E, Jackrel SL, Mladenov N, Symons CC, Shurin JB. Fire transforms effects of terrestrial subsidies on aquatic ecosystem structure and function. GLOBAL CHANGE BIOLOGY 2024; 30:e17058. [PMID: 38273540 DOI: 10.1111/gcb.17058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 01/27/2024]
Abstract
Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO2 into the atmosphere. Climate change is projected to increase the prevalence and severity of wildfires. However, fire effects on the fate and impact of terrestrial organic matter (i.e., terrestrial subsidies) in aquatic ecosystems are unclear. Here, we performed a gradient design experiment in freshwater pond mesocosms adding 15 different amounts of burned or unburned plant detritus and tracking the chronology of detritus effects at 10, 31, 59, and 89 days. We show terrestrial subsidies had time- and mass-dependent, non-linear impacts on ecosystem function that influenced dissolved organic carbon (DOC), ecosystem metabolism (net primary production and respiration), greenhouse gas concentrations (carbon dioxide [CO2 ], methane [CH4 ]), and trophic transfer. These impacts were shifted by fire treatment. Burning increased the elemental concentration of detritus (increasing %N, %P, %K), with cascading effects on ecosystem function. Mesocosms receiving burned detritus had lower [DOC] and [CO2 ] and higher dissolved oxygen (DO) through Day 59. Fire magnified the effects of plant detritus on aquatic ecosystem metabolism by stimulating photosynthesis and respiration at intermediate detritus-loading through Day 89. The effect of loading on DO was similar for burned and unburned treatments (Day 10); however, burned-detritus in the highest loading treatments led to sustained hypoxia (through Day 31), and long-term destabilization of ecosystem metabolism through Day 89. In addition, fire affected trophic transfer by increasing autochthonous nitrogen source utilization and reducing the incorporation of 15 N-labeled detritus into plankton biomass, thereby reducing the flux of terrestrial subsidies to higher trophic levels. Our results indicate fire chemically transforms plant detritus and alters the role of aquatic ecosystems in processing and storing carbon. Wildfire may therefore induce shifts in ecosystem functions that cross the boundary between aquatic and terrestrial habitats.
Collapse
Affiliation(s)
- Christopher B Wall
- Department of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, California, USA
| | - Cody J Spiegel
- Department of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, California, USA
| | - Evelyn M Diaz
- Department of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, California, USA
| | - Cindy H Tran
- Department of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, California, USA
| | - Alexia Fabiani
- Department of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, California, USA
| | - Taryn Y Broe
- Department of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, California, USA
| | - Elisabet Perez-Coronel
- Department of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, California, USA
| | - Sara L Jackrel
- Department of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, California, USA
| | - Natalie Mladenov
- Department of Civil Construction & Environmental Engineering, San Diego State University, San Diego, California, USA
| | - Celia C Symons
- Department of Ecology, Behavior and Evolution, University of California, Irvine, California, USA
| | - Jonathan B Shurin
- Department of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, California, USA
| |
Collapse
|
15
|
Rankinen K, Junttila V, Futter M, Cano Bernal JE, Butterfield D, Holmberg M. Quantification of the effect of environmental changes on the brownification of Lake Kukkia in southern Finland. AMBIO 2023; 52:1834-1846. [PMID: 37733219 PMCID: PMC10562317 DOI: 10.1007/s13280-023-01911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/31/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023]
Abstract
The browning of surface waters due to the increased terrestrial loading of dissolved organic carbon is observed across the northern hemisphere. Brownification is often explained by changes in large-scale anthropogenic pressures (including acidification, and climate and land-use changes). We quantified the effect of environmental changes on the brownification of an important lake for birds, Kukkia in southern Finland. We studied the past trends of organic carbon loading from catchments based on observations taken since the 1990s. We created hindcasting scenarios for deposition, climate and land-use change in order to simulate their quantitative effect on brownification by using process-based models. Changes in forest cuttings were shown to be the primary reason for the brownification. According to the simulations, a decrease in deposition has resulted in a slightly lower leaching of total organic carbon (TOC). In addition, runoff and TOC leaching from terrestrial areas to the lake was smaller than it would have been without the observed increasing trend in temperature by 2 °C in 25 years.
Collapse
Affiliation(s)
- Katri Rankinen
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Virpi Junttila
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Martyn Futter
- Swedish University of Agricultural Sciences, P.O. Box 7070, 750 07 Uppsala, Sweden
| | | | | | - Maria Holmberg
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| |
Collapse
|
16
|
Reeve C, Robichaud JA, Fernandes T, Bates AE, Bramburger AJ, Brownscombe JW, Davy CM, Henry HAL, McMeans BC, Moise ERD, Sharma S, Smith PA, Studd EK, O’Sullivan A, Sutton AO, Templer PH, Cooke SJ. Applied winter biology: threats, conservation and management of biological resources during winter in cold climate regions. CONSERVATION PHYSIOLOGY 2023; 11:coad027. [PMID: 37179705 PMCID: PMC10170328 DOI: 10.1093/conphys/coad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Winter at high latitudes is characterized by low temperatures, dampened light levels and short photoperiods which shape ecological and evolutionary outcomes from cells to populations to ecosystems. Advances in our understanding of winter biological processes (spanning physiology, behaviour and ecology) highlight that biodiversity threats (e.g. climate change driven shifts in reproductive windows) may interact with winter conditions, leading to greater ecological impacts. As such, conservation and management strategies that consider winter processes and their consequences on biological mechanisms may lead to greater resilience of high altitude and latitude ecosystems. Here, we use well-established threat and action taxonomies produced by the International Union of Conservation of Nature-Conservation Measures Partnership (IUCN-CMP) to synthesize current threats to biota that emerge during, or as the result of, winter processes then discuss targeted management approaches for winter-based conservation. We demonstrate the importance of considering winter when identifying threats to biodiversity and deciding on appropriate management strategies across species and ecosystems. We confirm our expectation that threats are prevalent during the winter and are especially important considering the physiologically challenging conditions that winter presents. Moreover, our findings emphasize that climate change and winter-related constraints on organisms will intersect with other stressors to potentially magnify threats and further complicate management. Though conservation and management practices are less commonly considered during the winter season, we identified several potential or already realized applications relevant to winter that could be beneficial. Many of the examples are quite recent, suggesting a potential turning point for applied winter biology. This growing body of literature is promising but we submit that more research is needed to identify and address threats to wintering biota for targeted and proactive conservation. We suggest that management decisions consider the importance of winter and incorporate winter specific strategies for holistic and mechanistic conservation and resource management.
Collapse
Affiliation(s)
- Connor Reeve
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Jessica A Robichaud
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Timothy Fernandes
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario, L5L 1C6, Canada
| | - Amanda E Bates
- Department of Biology, University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia, V8P 5C2 Canada
| | - Andrew J Bramburger
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, Ontario, L7S 1A1, Canada
| | - Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd., Burlington, Ontario, L7S 1A1, Canada
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Christina M Davy
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, Ontario, N6A 5B7, Canada
| | - Bailey C McMeans
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario, L5L 1C6, Canada
| | - Eric R D Moise
- Natural Resources Canada – Canadian Forest Service, 26 University Drive, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Sapna Sharma
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| | - Paul A Smith
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
- Wildlife Research Division, Environment and Climate Change Canada, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Emily K Studd
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario, L5L 1C6, Canada
| | - Antóin O’Sullivan
- Biology Department, Canadian Rivers Institute, University of New Brunswick, 550 Windsor St., Fredericton, New Brunswick, E3B 5A3, Canada
| | - Alex O Sutton
- School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, Gwynedd, LL57 2UR, UK
| | - Pamela H Templer
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
17
|
Eloranta AP, Perälä T, Kuparinen A. Effects of temporal abiotic drivers on the dynamics of an allometric trophic network model. Ecol Evol 2023; 13:e9928. [PMID: 36969931 PMCID: PMC10034489 DOI: 10.1002/ece3.9928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 03/05/2023] [Indexed: 03/25/2023] Open
Abstract
Current ecological research and ecosystem management call for improved understanding of the abiotic drivers of community dynamics, including temperature effects on species interactions and biomass accumulation. Allometric trophic network (ATN) models, which simulate material (carbon) transfer in trophic networks from producers to consumers based on mass‐specific metabolic rates, provide an attractive framework to study consumer–resource interactions from organisms to ecosystems. However, the developed ATN models rarely consider temporal changes in some key abiotic drivers that affect, for example, consumer metabolism and producer growth. Here, we evaluate how temporal changes in carrying capacity and light‐dependent growth rate of producers and in temperature‐dependent mass‐specific metabolic rate of consumers affect ATN model dynamics, namely seasonal biomass accumulation, productivity, and standing stock biomass of different trophic guilds, including age‐structured fish communities. Our simulations of the pelagic Lake Constance food web indicated marked effects of temporally changing abiotic parameters on seasonal biomass accumulation of different guild groups, particularly among the lowest trophic levels (primary producers and invertebrates). While the adjustment of average irradiance had minor effect, increasing metabolic rate associated with 1–2°C temperature increase led to a marked decline of larval (0‐year age) fish biomass, but to a substantial biomass increase of 2‐ and 3‐year‐old fish that were not predated by ≥4‐year‐old top predator fish, European perch (Perca fluviatilis). However, when averaged across the 100 simulation years, the inclusion of seasonality in abiotic drivers caused only minor changes in standing stock biomasses and productivity of different trophic guilds. Our results demonstrate the potential of introducing seasonality in and adjusting the average values of abiotic ATN model parameters to simulate temporal fluctuations in food‐web dynamics, which is an important step in ATN model development aiming to, for example, assess potential future community‐level responses to ongoing environmental changes.
Collapse
Affiliation(s)
- Antti P. Eloranta
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Tommi Perälä
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
18
|
Spilling K, Asmala E, Haavisto N, Haraguchi L, Kraft K, Lehto AM, Lewandowska AM, Norkko J, Piiparinen J, Seppälä J, Vanharanta M, Vehmaa A, Ylöstalo P, Tamminen T. Brownification affects phytoplankton community composition but not primary productivity in eutrophic coastal waters: A mesocosm experiment in the Baltic Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156510. [PMID: 35700777 DOI: 10.1016/j.scitotenv.2022.156510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Climate change is projected to cause brownification of some coastal seas due to increased runoff of terrestrially derived organic matter. We carried out a mesocosm experiment (15 d) to test the effect of this on the planktonic ecosystem expecting reduced primary production and shifts in the phytoplankton community composition. The experiment was set up in 2.2 m3 mesocosm bags using four treatments, each with three replicates: control (Contr) without any manipulation, organic carbon additive HuminFeed (Hum; 2 mg L-1), inorganic nutrients (Nutr; 5.7 μM NH4 and 0.65 μM PO4), and combined Nutr and Hum (Nutr + Hum) additions. Measured variables included organic and inorganic nutrient pools, chlorophyll a (Chla), primary and bacterial production and particle counts by flow cytometry. The bags with added inorganic nutrients developed a phytoplankton bloom that depleted inorganic N at day 6, followed by a rapid decline in Chla. Brownification did not reduce primary production at the tested concentration. Bacterial production was lowest in the Contr, but similar in the three treatments receiving additions likely due to increased carbon available for heterotrophic bacteria. Picoeukaryotes clearly benefited by brownification after inorganic N depletion, which could be due to more effective nutrient recycling, nutrient affinity, light absorption, or alternatively lower grazing pressure. In conclusion, brownification shifted the phytoplankton community composition towards smaller species with potential effects on carbon fluxes, such as sinking rates and export to the sea floor.
Collapse
Affiliation(s)
- Kristian Spilling
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland; Centre for Coastal Research, University of Agder, Kristiansand, Norway.
| | - Eero Asmala
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland; Geological Survey of Finland, Espoo, Finland
| | - Noora Haavisto
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Lumi Haraguchi
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Kaisa Kraft
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Anne-Mari Lehto
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | | | - Joanna Norkko
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Jonna Piiparinen
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Jukka Seppälä
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Mari Vanharanta
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland; Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Anu Vehmaa
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Pasi Ylöstalo
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Timo Tamminen
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| |
Collapse
|
19
|
Keva O, Kiljunen M, Hämäläinen H, Jones RI, Kahilainen KK, Kankaala P, Laine MB, Schilder J, Strandberg U, Vesterinen J, Taipale SJ. Allochthony, fatty acid and mercury trends in muscle of Eurasian perch (Perca fluviatilis) along boreal environmental gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155982. [PMID: 35588838 DOI: 10.1016/j.scitotenv.2022.155982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Environmental change, including joint effects of increasing dissolved organic carbon (DOC) and total phosphorus (TP) in boreal northern lakes may affect food web energy sources and the biochemical composition of organisms. These environmental stressors are enhanced by anthropogenic land-use and can decrease the quality of polyunsaturated fatty acids (PUFAs) in seston and zooplankton, and therefore, possibly cascading up to fish. In contrast, the content of mercury in fish increases with lake browning potentially amplified by intensive forestry practises. However, there is little evidence on how these environmental stressors simultaneously impact beneficial omega-3 fatty acid (n3-FA) and total mercury (THg) content of fish muscle for human consumption. A space-for-time substitution study was conducted to assess whether environmental stressors affect Eurasian perch (Perca fluviatilis) allochthony and muscle nutritional quality [PUFA, THg, and their derivative, the hazard quotient (HQ)]. Perch samples were collected from 31 Finnish lakes along pronounced lake size (0.03-107.5 km2), DOC (5.0-24.3 mg L-1), TP (5-118 μg L-1) and land-use gradients (forest: 50.7-96.4%, agriculture: 0-32.6%). These environmental gradients were combined using principal component analysis (PCA). Allochthony for individual perch was modelled using source and consumer δ2H values. Perch allochthony increased with decreasing lake pH and increasing forest coverage (PC1), but no correlation between lake DOC and perch allochthony was found. Perch muscle THg and omega-6 fatty acid (n6-FA) content increased with PC1 parallel with allochthony. Perch muscle DHA (22:6n3) content decreased, and ALA (18:3n3) increased towards shallower murkier lakes (PC2). Perch allochthony was positively correlated with muscle THg and n6-FA content, but did not correlate with n3-FA content. Hence, the quality of perch muscle for human consumption decreases (increase in HQ) with increasing forest coverage and decreasing pH, potentially mediated by increasing fish allochthony.
Collapse
Affiliation(s)
- Ossi Keva
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland.
| | - Mikko Kiljunen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| | - Heikki Hämäläinen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| | - Roger I Jones
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Paula Kankaala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Miikka B Laine
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| | - Jos Schilder
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| | - Ursula Strandberg
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jussi Vesterinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland; Association for Water and Environment of Western Uusimaa, Lohja, Finland
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| |
Collapse
|