1
|
Dou J, Xia R, Zhang K, Xu C, Chen Y, Liu X, Hou X, Yin Y, Li L. Landscape fragmentation of built-up land significantly impact on water quality in the Yellow River Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123232. [PMID: 39531767 DOI: 10.1016/j.jenvman.2024.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/12/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Urbanization development often leads to significant changes in the extent in area and fragmentation of built-up land landscape pattern (BLLP) in river basins, which greatly impact the processes of rainfall runoff and pollutant migration. Understanding the spatial scale effects and driving mechanisms of BLLP changes on water quality in large river basins is a challenging research topic and an international frontier in the interdisciplinary fields of geography and environment. This study analyzes the spatial variations of BLLP and water quality throughout the Yellow River Basin (YRB) during the rainy seasons from 2019 to 2021 (4 h scale). Utilized the random forest model to quantitatively separates the contributions of rainfall processes to surface runoff and water pollution, revealing the scale effects and non-linear driving mechanisms of BLLP impacts on water environment changes. The results indicate that: 1) The YRB exhibits great spatial heterogeneity in terms of both BLLP and water quality, with places with lower water quality displaying bigger areas and higher degrees of BLLP fragmentation. 2) The patch density and built-up land area (PD.B and CA.B) have a major impact on changes in water quality in the YRB, with notable impacts noted in circular buffer zones with radii of 20 km and 5 km, respectively. 3) PD.B is sensitive to water quality in the YRB, explaining 39.1%-49.5% of the variance under different rainfall conditions, and exhibits a significant non-linear relationship, with an impact threshold of 0.38 (n/100 ha). The study suggests that for large-scale regions like the YRB, the degree of BLLP fragmentation is more likely to lead to degradation of water environmental quality compared to its area. BLLP fragmentation due to higher PD.B and CA.B disrupts the original ecosystem and hydrological connectivity, resulting in poorer retention and filtration of pollutants carried by rainfall runoff, while increasing the export of other pollutants. However, once urbanization surpasses a certain threshold, the BLLP fragmentation can enhance water quality by reducing the impermeable surface connectivity, as they are no longer impacted by expanding areas. To achieve ecologically sustainable development, it is necessary to apply rational landscape management and water resource management policies that consider the dual process of how BLLP fragmentation affects the water environment.
Collapse
Affiliation(s)
- Jinghui Dou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Northwest University College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Rui Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Kai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chao Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiaoyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xikang Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingze Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Upper and Middle Yellow River Bureau, YRCC, Xi'an, 710021, China
| | - Lina Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Benaafi M, Pradipta A, Tawabini B, Al-Areeq AM, Bafaqeer A, Humphrey JD, Nazal MK, Aljundi IH. Suitability of treated wastewater for irrigation and its impact on groundwater resources in arid coastal regions: Insights for water resources sustainability. Heliyon 2024; 10:e29320. [PMID: 38644853 PMCID: PMC11031766 DOI: 10.1016/j.heliyon.2024.e29320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Water scarcity threatens agriculture and food security in arid regions like Saudi Arabia. The nation produces significant quantities of municipal wastewater, which, with adequate treatment, could serve as an alternative water source for irrigation, thereby reducing reliance on fossil and non-renewable groundwater. This study assessed the appropriateness of using treated wastewater (TWW) for irrigation in a dry coastal agricultural region in Eastern Saudi Arabia and its impact on groundwater resources. Field investigations were conducted in Qatif to collect water samples and field measurements. A multi-criteria approach was applied to evaluate the TWW's suitability for irrigation, including complying with Saudi Standards, the Irrigation Water Quality Index (IWQI), the National Sanitation Foundation water quality index (NSFWQI), and the individual irrigation indices. In addition, the impact of TWW on groundwater was assessed through hydrogeological and isotope approaches. The results indicate that the use of TWW in the study area complied with the Saudi reuse guidelines except for nitrate, aluminum, and molybdenum. However, irrigation water quality indices classify TWW as having limitations that necessitate the use for salt-tolerant crops on permeable and well-drained soils. Stable isotopic analysis (δ2H, δ18O) revealed that long-term irrigation with TWW affected the shallow aquifer, while deep aquifers were minimally impacted due to the presence of aquitard layer. The application of TWW irrigation has successfully maintained groundwater sustainability in the study area, as evidenced by increased groundwater levels up to 2.3 m. Although TWW contributes to crop productivity, long term agricultural sustainability could be enhanced by improving effluent quality, regulating irrigation practices, implementing buffer zones, and monitoring shallow groundwater. An integrated approach that combines advanced wastewater treatment methods, community involvement, regulatory oversight, and targeted monitoring is recommended to be implemented.
Collapse
Affiliation(s)
- Mohammed Benaafi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Geosciences, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Arya Pradipta
- Department of Geosciences, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Bassam Tawabini
- Department of Geosciences, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Ahmed M. Al-Areeq
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdullah Bafaqeer
- Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - John D. Humphrey
- Department of Geosciences, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mazen K. Nazal
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Isam H. Aljundi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Lin ZW, Shapiro EF, Barajas-Rodriguez FJ, Gaisin A, Ateia M, Currie J, Helbling DE, Gwinn R, Packman AI, Dichtel WR. Trace Organic Contaminant Removal from Municipal Wastewater by Styrenic β-Cyclodextrin Polymers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19624-19636. [PMID: 37934073 DOI: 10.1021/acs.est.3c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Trace organic contaminants (TrOCs) present major removal challenges for wastewater treatment. TrOCs, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), are associated with chronic toxicity at ng L-1 exposure levels and should be removed from wastewater to enable safe reuse and release of treated effluents. Established adsorbents, such as granular activated carbon (GAC), exhibit variable TrOC removal and fouling by wastewater constituents. These shortcomings motivate the development of selective novel adsorbents that also maintain robust performance in wastewater. Cross-linked β-cyclodextrin (β-CD) polymers are promising adsorbents with demonstrated TrOC removal efficacy. Here, we report a simplified and potentially scalable synthesis of a porous polymer composed of styrene-linked β-CD and cationic ammonium groups. Batch adsorption experiments demonstrate that the polymer is a selective adsorbent exhibiting complete removal for six out of 13 contaminants with less adsorption inhibition than GAC in wastewater. The polymer also exhibits faster adsorption kinetics than GAC and ion exchange (IX) resin, higher adsorption affinity for PFAS than GAC, and is regenerable by solvent wash. Rapid small-scale column tests show that the polymer exhibits later breakthrough times compared to GAC and IX resin. These results demonstrate the potential for β-CD polymers to remediate TrOCs from complex water matrices.
Collapse
Affiliation(s)
- Zhi-Wei Lin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emma F Shapiro
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Arsen Gaisin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | | | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rosa Gwinn
- AECOM, Dallas, Texas 75240, United States
| | - Aaron I Packman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Muhammad S, Ullah I. Spatial and temporal distribution of heavy metals pollution and risk indices in surface sediments of Gomal Zam Dam Basin, Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1155. [PMID: 37673799 DOI: 10.1007/s10661-023-11763-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Sediments were considered a sink and potential source of heavy metals in the aquatic system. For this purpose, the present study examined surface sediments for spatial and temporal variation of heavy metals pollution and risk indices in the Gomal Zam Dam Basin (GZDB), Pakistan. Sediment samples (n = 20) were collected from the GZDB, i.e., Gomal Zam Dam, its inlets, and outlets in the winter and summer seasons of 2020, and examined for heavy metals such as zinc (Zn), nickel (Ni), manganese (Mn), lead (Pb), chromium (Cr), copper (Cu), iron (Fe), and cobalt (Co) concentrations. Among GZDB, results showed that the Zhob River Inlet had a higher levels of heavy metals in both seasons. The results revealed that pollution load index values were < 1, observing no pollution in the aquatic system. The risk indices values revealed that sampling sites showed no or very low risk during the summer, 84% of samples showed no or very low risk during the winter, and the rest noted with reasonable risks. Winter season showed higher average values of contamination and risk indices than summer. Statistical analyses revealed that the heavy metals contaminations were mainly due to geogenic sources of rock weathering and ore deposits, with minor contributions from anthropic activities. This study recommends regular monitoring of temporal studies on heavy metals contamination in the water of the GZDB.
Collapse
Affiliation(s)
- Said Muhammad
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan.
| | - Insha Ullah
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
| |
Collapse
|
5
|
Benaafi M, Abba SI, Aljundi IH. Effects of Seawater Intrusion on the Groundwater Quality of Multi-Layered Aquifers in Eastern Saudi Arabia. Molecules 2023; 28:molecules28073173. [PMID: 37049937 PMCID: PMC10096431 DOI: 10.3390/molecules28073173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The degradation of groundwater (GW) quality due to seawater intrusion (SWI) is a major water security issue in water-scarce regions. This study aims to delineate the impact of SWI on the GW quality of a multilayered aquifer system in the eastern coastal region of Saudi Arabia. The physical and chemical properties of the GW were determined via field investigations and laboratory analyses. Irrigation indices (electrical conductivity (EC), potential salinity (PS), sodium adsorption ratio (SAR), Na%, Kelly’s ratio (KR), magnesium adsorption ratio (MAR), and permeability index (PI)) and a SWI index (fsea) were obtained to assess the suitability of GW for irrigation. K-mean clustering, correlation analysis, and principal component analysis (PCA) were used to determine the relationship between irrigation hazard indices and the degree of SWI. The tested GW samples were grouped into four clusters (C1, C2, C3, and C4), with average SWI degrees of 15%, 8%, 5%, and 2%, respectively. The results showed that the tested GW was unsuitable for irrigation due to salinity hazards. However, a noticeable increase in sodium and magnesium hazards was also observed. Moreover, increasing the degree of SWI (fsea) was associated with increasing salinity, sodium, and magnesium, with higher values observed in the GW samples in cluster C1, followed by clusters C2, C3, and C4. The correlation analysis and PCA results illustrated that the irrigation indices, including EC, PS, SAR, and MAR, were grouped with the SWI index (fsea), indicating the possibility of using them as primary irrigation indices to reflect the impact of SWI on GW quality in coastal regions. The results of this study will help guide decision-makers toward proper management practices for SWI mitigation and enhancing GW quality for irrigation.
Collapse
Affiliation(s)
- Mohammed Benaafi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - S. I. Abba
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Isam H. Aljundi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
6
|
Ayejoto DA, Agbasi JC, Egbueri JC, Abba S. Evaluation of oral and dermal health risk exposures of contaminants in groundwater resources for nine age groups in two densely populated districts, Nigeria. Heliyon 2023; 9:e15483. [PMID: 37128320 PMCID: PMC10148108 DOI: 10.1016/j.heliyon.2023.e15483] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
Human health and the sustainability of the socioeconomic system are directly related to water quality. As anthropogenic activity becomes more intense, pollutants, particularly potentially harmful elements (PHEs), penetrate water systems and degrade water quality. The purpose of this study was to evaluate the safety of using groundwater for domestic and drinking purposes through oral and dermal exposure routes, as well as the potential health risks posed to humans in the Nnewi and Awka regions of Nigeria. The research involved the application of a combination of the National Sanitation Foundation Water Quality Index (NSFWQI), HERisk code, and hierarchical dendrograms. Additionally, we utilized the regulatory guidelines established by the World Health Organization and the Standard Organization of Nigeria to compare the elemental compositions of the samples. The physicochemical parameters and NSFWQI evaluation revealed that the majority of the samples were PHE-polluted. Based on the HERisk code, it was discovered that in both the Nnewi and Awka regions, risk levels are higher for people aged 1 to <11 and >65 than for people aged 16 to <65. Overall, it was shown that all age categories appeared to be more vulnerable to risks due to the consumption than absorption of PHEs, with Cd > Pb > Cu > Fe for Nnewi and Pb > Cd > Cu > Fe for water samples from Awka. Summarily, groups of middle age are less susceptible to possible health issues than children and elderly individuals. Hierarchical dendrograms and correlation analysis showed the spatio-temporal implications of the drinking groundwater quality and human health risks in the area. This research could help local government agencies make informed decisions on how to effectively safeguard the groundwater environment while also utilizing the groundwater resources sustainably.
Collapse
Affiliation(s)
- Daniel A. Ayejoto
- Department of Environmental and Sustainability Sciences, Texas Christian University, Fort Worth, TX, USA
| | - Johnson C. Agbasi
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
| | - Johnbosco C. Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
| | - S.I. Abba
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
7
|
Chidiac S, El Najjar P, Ouaini N, El Rayess Y, El Azzi D. A comprehensive review of water quality indices (WQIs): history, models, attempts and perspectives. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2023; 22:349-395. [PMID: 37234131 PMCID: PMC10006569 DOI: 10.1007/s11157-023-09650-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Water quality index (WQI) is one of the most used tools to describe water quality. It is based on physical, chemical, and biological factors that are combined into a single value that ranges from 0 to 100 and involves 4 processes: (1) parameter selection, (2) transformation of the raw data into common scale, (3) providing weights and (4) aggregation of sub-index values. The background of WQI is presented in this review study. the stages of development, the progression of the field of study, the various WQIs, the benefits and drawbacks of each approach, and the most recent attempts at WQI studies. In order to grow and elaborate the index in several ways, WQIs should be linked to scientific breakthroughs (example: ecologically). Consequently, a sophisticated WQI that takes into account statistical methods, interactions between parameters, and scientific and technological improvement should be created in order to be used in future investigations.
Collapse
Affiliation(s)
- Sandra Chidiac
- Department of Agricultural and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon
| | - Paula El Najjar
- Department of Agricultural and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon
- FMPS HOLDING BIOTECKNO s.a.l. Research & Quality Solutions, Naccash, P.O. Box 60 247, Beirut, Lebanon
| | - Naim Ouaini
- Department of Agricultural and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon
| | - Youssef El Rayess
- Department of Agricultural and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon
| | - Desiree El Azzi
- Department of Agricultural and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon
- Syngenta, Environmental Safety, Avenue des Près, 78286 Guyancourt, France
| |
Collapse
|
8
|
Dhaoui O, Agoubi B, Antunes IM, Tlig L, Kharroubi A. Groundwater quality for irrigation in an arid region-application of fuzzy logic techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29773-29789. [PMID: 36422785 DOI: 10.1007/s11356-022-24334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Groundwater is the main source to answer the irrigation supply in several arid and semi-arid areas. In the present work, groundwater quality for irrigation purposes in the arid region of Menzel Habib (Tunisia) for thirty-six groundwater samples is assessed considering the application of different conventional water quality indicators, particularly, electrical conductivity (EC), sodium absorption ratio (SAR), soluble sodium percentage (SSP), magnesium adsorption ratio (MAR), Kelly ratio (KR), and permeability index (PI). The results obtained indicate a variability for EC: 3.06 to 14.98 mS.cm-1; SAR: 4.08 to 19.30; SSP: 35.78 to 71.53%; MAR: 34.19 to 56.01; PI: 38.47 to 72.74; and KR: 0.56 to 2.47. These results suggest that groundwater from Menzel Habib aquifer system is classified between excellent to unsuitable according to the applied water quality indices. Furthermore, the groundwater samples are also plotted in the Richards diagram classification system, based on the relation between SAR and EC, suggesting that almost groundwater samples present a harmful quality. Moreover, fuzzy logic model has been proposed and created to assess groundwater quality for irrigation. The membership functions are constructed for six significant parameters such as EC, SAR, SSP, MAR, KR, and PI and the rules are, then, fired to get a simple Fuzzy Irrigation Water Quality Index (FIWQI). The obtained groundwater quality results suggest that 3% of the samples from Menzel Habib region are considered as "good" for irrigation, 3% are classified as "good to permissible", 33% with a "permissible" quality, 36% "permissible to unsuitable", while 25% of groundwater present an "unsuitable" quality. Thus, the use of fuzzy logic techniques has more reliable and robust results by overcoming the uncertainties in the decision-making attributed to the conventional methods by the creation of new classes (excellent to good, good to permissible, and permissible to unsuitable) in addition to the classes proposed by Richards diagram classification (excellent, good, permissible, and unsuitable) to assess the groundwater quality suitability for irrigation purposes.
Collapse
Affiliation(s)
- Oussama Dhaoui
- Higher Institute of Water Sciences and Techniques, Applied-Hydrosciences Laboratory, University of Gabes, University Campus, 6033 Gabes, Gabes, Tunisia.
- Institute of Earth Sciences, Pole of University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Belgacem Agoubi
- Higher Institute of Water Sciences and Techniques, Applied-Hydrosciences Laboratory, University of Gabes, University Campus, 6033 Gabes, Gabes, Tunisia
| | - Isabel Margarida Antunes
- Institute of Earth Sciences, Pole of University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Lotfi Tlig
- Higher Institute of Informatics and Multimedia of Gabes, University Campus, 6033 City El Amel 4, Gabes, Tunisia
| | - Adel Kharroubi
- Higher Institute of Water Sciences and Techniques, Applied-Hydrosciences Laboratory, University of Gabes, University Campus, 6033 Gabes, Gabes, Tunisia
| |
Collapse
|
9
|
Performance Assessment of Natural Wastewater Treatment Plants by Multivariate Statistical Models: A Case Study. SUSTAINABILITY 2022. [DOI: 10.3390/su14137658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Waste stabilization ponds (WSPs) as natural wastewater treatment plants are commonly utilized for wastewater treatment due to their simple design, low cost, and low-skilled operator requirements. Large-scale studies assessing the performance of WSPs using multivariate statistical models are scarce. Therefore, this study was conducted to assess the performance of 16 full-scale WSPs regarding physicochemical parameters, algae, bacterial indicators, and pathogens (e.g., Cryptosporidium, Entamoeba histolytica) by using multivariate statistical models. The principal component analysis revealed that the chemical pollutants were removed significantly (p < 0.001) through the treatment stages of 16 WSPs, indicating that the treatment stages made a substantial change in the environmental parameters. The non-multidimensional scale analysis revealed that the treatment stages restructured the bacterial indicators significantly (p < 0.001) in the WSPs, implying that the bacterial indicators were removed with the progress of the treatment processes. The algal community exhibited a distinct pattern between the geographical location (i.e., upper WSPs versus lower WSPs) and different treatment stages (p < 0.001). Four out of the sixteen WSPs did not comply with the Egyptian ministerial decree 48/1982 for discharge in agriculture drainage; three of these stations are in lower Egypt (M.K., Al-Adlia, and Ezbet El-Borg), and one is in upper Egypt (Armant). The continuous monitoring of WSPs for compliance with regulatory guidelines with the aid of multivariate statistical models should be routinely performed.
Collapse
|
10
|
The Potential Application of Natural Clinoptilolite-Rich Zeolite as Support for Bacterial Community Formation for Wastewater Treatment. MATERIALS 2022; 15:ma15103685. [PMID: 35629710 PMCID: PMC9143755 DOI: 10.3390/ma15103685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the use of natural zeolite as support for microbial community formation during wastewater treatment. Scanning electron microscopy (SEM), thermal decomposition and differential thermogravimetric curves (TGA/DGT) techniques were used for the physicochemical and structural characterization of zeolites. The chemical characterization of wastewater was performed before and after treatment, after 30 days of using stationary zeolite as support. The chemical composition of wastewater was evaluated in terms of the products of nitrification/denitrification processes. The greatest ammonium (NH4+) adsorption was obtained for wastewater contaminated with different concentrations of ammonium, nitrate and nitrite. The wastewater quality index (WWQI) was determined to assess the effluent quality and the efficiency of the treatment plant used, showing a maximum of 71% quality improvement, thus suggesting that the treated wastewater could be discharged into aquatic environments. After 30 days, NH4+ demonstrated a high removal efficiency (higher than 98%), while NO3+ and NO2+ had a removal efficiency of 70% and 54%, respectively. The removal efficiency for metals was observed as follows (%): Mn > Cd > Cr > Zn > Fe > Ni > Co > Cu > Ba > Pb > Sr. Analysis of the microbial diversity in the zeolite samples indicated that the bacteria are formed due to the existence of nutrients in wastewater which favor their formation. In addition, the zeolite was characterized by SEM and the results indicated that the zeolite acts as an adsorbent for the pollutants and, moreover, as a support material for microbial community formation under optimal conditions. Comparing the two studied zeolites, NZ1 (particle size 1−3 mm) was found to be more suitable for wastewater treatment. Overall, the natural zeolite demonstrated high potential for pollutant removal and biomass support for bacteria community growth in wastewater treatment.
Collapse
|