1
|
Chen Y, Yu X, Chen S, Lu P. Stereoselective toxicity: Investigating the adverse effects of benzovindiflupyr on Xenopus laevis tadpoles. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135789. [PMID: 39276749 DOI: 10.1016/j.jhazmat.2024.135789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The novel chiral fungicide benzovindiflupyr exerts adverse effects on aquatic organisms; however, its toxic mechanism and stereoselectivity remain largely unknown. The current study aimed to investigate the enantioselective ecotoxicity mechanism of benzovindiflupyr in Xenopus laevis tadpoles using a 28-day exposure experiment. Results of the acute toxicity assessment indicated that (1S,4R)- and (1R,4S)-benzovindiflupyr exhibited high toxicity, with (1S,4R)- demonstrating approximately 75 times greater toxicity than (1R,4S)-. Compared to the latter, (1S,4R)-benzovindiflupyr significantly affected the growth, movement behavior, and oxidative stress of X. laevis tadpoles. The integration of metabolomics and transcriptomics data revealed that (1S,4R)-benzovindiflupyr disrupted the glycine, serine, and threonine metabolic pathways by modulating the activities of key enzymes. This dysregulation resulted in aberrant carbohydrate utilization, antioxidant pathways, and structural protein synthesis and degradation. Molecular docking confirmed that (1S,4R)-benzovindiflupyr exhibited superior docking activity with key enzymes, potentially contributing to its stereoselective toxicity. This study offers novel molecular perspectives on the enantioselective ecotoxicity mechanism of benzovindiflupyr toward aquatic organisms and highlights potential target proteins implicated in metabolic disorders.
Collapse
Affiliation(s)
- Yafang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shaoqin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Sun J, Wu J, Zhang X, Wei Q, Kang W, Wang F, Liu F, Zhao M, Xu S, Han B. Enantioselective toxicity of the neonicotinoid dinotefuran on honeybee (Apis mellifera) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:174014. [PMID: 38880156 DOI: 10.1016/j.scitotenv.2024.174014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The threat of neonicotinoids to insect pollinators, particularly honeybees (Apis mellifera), is a global concern, but the risk of chiral neonicotinoids to insect larvae remains poorly understood. In the current study, we evaluated the acute and chronic toxicity of dinotefuran enantiomers to honeybee larvae in vitro and explored the mechanism of toxicity. The results showed that the acute median lethal dose (LD50) of S-dinotefuran to honeybee larvae was 30.0 μg/larva after oral exposure for 72 h, which was more toxic than rac-dinotefuran (92.7 μg/larva) and R-dinotefuran (183.6 μg/larva). Although the acute toxicity of the three forms of dinotefuran to larvae was lower than that to adults, chronic exposure significantly reduced larval survival, larval weight, and weight of newly emerged adults. Analysis of gene expression and hormone titer indicated that dinotefuran affects larval growth and development by interfering with nutrient digestion and absorption and the molting system. Analysis of hemolymph metabolome further revealed that disturbances in the neuroactive ligand-receptor interaction pathway and energy metabolism are the key mechanisms of dinotefuran toxicity to bee larvae. In addition, melatonin and vitellogenin are used by larvae to cope with dinotefuran-induced oxidative stress. Our results contribute to a comprehensive understanding of dinotefuran damage to bees and provide new insights into the mechanism of enantioselective toxicity of insecticides to insect larvae.
Collapse
Affiliation(s)
- Jiajing Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Modern Agricultural College, Yibin Vocational and Technical College, Yibin 644100, China
| | - Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xufeng Zhang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weipeng Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Wang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meijiao Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Fang Y, Lv S, Xiao S, Hou H, Yao J, Cao Y, He B, Liu X, Wang P, Liu D, Zhou Z. Enantioselective bioaccumulation and toxicological effects of chiral neonicotinoid sulfoxaflor in rats. CHEMOSPHERE 2024; 358:142065. [PMID: 38636916 DOI: 10.1016/j.chemosphere.2024.142065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Sulfoxaflor is a widely used fourth-generation neonicotinoid pesticide, which has been detected in biological and environmental samples. Sulfoxaflor can potentially be exposed to humans via the food chain, thus understanding its toxic effects and enantioselective bioaccumulation is crucial. In this study, toxicokinetics, bioaccumulation, tissue distribution and enantiomeric profiles of sulfoxaflor in rats were investigated through single oral exposure and 28-days continuous exposure experiment. Sulfoxaflor mainly accumulated in liver and kidney, and the (-)-2R,3R-sulfoxaflor and (-)-2S,3R-sulfoxaflor had higher enrichment than their enantiomers in rats. The toxicological effects were evaluated after 28-days exposure. Slight inflammation in liver and kidney were observed by histopathology. Sphingolipid, amino acid, and vitamin B6 metabolism pathways were significantly disturbed in metabonomics analysis. These toxicities were in compliance with dose-dependent effects. These results improve understanding of enantioselective bioaccumulation and the potential health risk of sulfoxaflor.
Collapse
Affiliation(s)
- Yaofeng Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Shengchen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Shouchun Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Haonan Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Jianing Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Yue Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Bingying He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
4
|
Luo R, He C, He J, Li Z, Wang Y, Hou M, Li P, Yu W, Cheng S, Song Z. Acute toxicology on Danio rerio embryo and adult from Chinese traditional medicine preparation Danggui Shaoyao san. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117528. [PMID: 38043754 DOI: 10.1016/j.jep.2023.117528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although the Traditional Chinese Medicine (TCM) prescription of Danggui Shaoyao San (DSS) presents substantial clinical efficacy and promising clinical prospects, the safety of DSS and its extracts have been inadequately investigated. The larva-adult duality of the zebrafish model offers a more efficient approach for evaluating the safety of herbal preparations in the fields of toxicology and pharmacology. AIM OF THE STUDY To investigate the acute toxicity of the extract derived from Danggui Shaoyao San, a traditional Chinese medicine preparation, on both Danio rerio embryos and adult organisms. MATERIALS AND METHODS The components of DSS were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The hatching rate of Danio rerio juveniles with different concentrations of DSS was calculated and the morphological changes of juveniles after administration were observed through a microscope. The behavioral trajectory of the adult fish was recorded by the observation tower of the automated Danio rerio analysis system, and DSS's effects on the behavior was analyzed. The pathological changes of Danio rerio gills, livers, kidneys, intestines and spermaries were examined using HE staining. RESULTS Compared with the control group, 25, 50 and 100 mg/L of DSS did not elicit any significant impacts on the hatching rate and morphology. Both 200 mg/L and the propylene glycol 2% reduced the hatching rate and caused the morphological teratogenic changes of the juvenile fish. The dosage of DSS below 100 mg/L had no discernible effect on the behavior of the adult fish, whereas the application of propylene glycol 2% was found to stimulate the adult fish, resulting in a notable increase in high-speed movement distance. 100 mg/L DSS group was not observed to cause any noticeable damage to the gills, livers, intestines and spermaries of Danio rerio, only mild nephrotoxicity was detected. The propylene glycol 2% group was found to result in pathological changes such as hyperplasia of epithelial cells on secondary lamellae, liver cell outline loss or atypia, tubal disorganization, goblet cell hypertrophy and irregularly arranged spermatozoa. CONCLUSION A viable approach for conducting toxicological studies on TCM preparations was developed and tested in this research. The findings showed that Danggui Shaoyao San has minimal acute toxicity to embryos and adult organisms at concentrations up to 100 mg/L. These results indicate that Danggui Shaoyao San is a safe TCM preparation.
Collapse
Affiliation(s)
- Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuke Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Mirong Hou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ping Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Shaowu Cheng
- Office of Science & Technology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
5
|
Sınacı C, Çelik A, Yetkin D, Çevik S, Güler G. Sulfoxaflor insecticide exhibits cytotoxic or genotoxic and apoptotic potential via oxidative stress-associated DNA damage in human blood lymphocytes cell cultures. Drug Chem Toxicol 2023; 46:972-983. [PMID: 36036091 DOI: 10.1080/01480545.2022.2114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
The need for foodstuff that emerged with the rapidly increasing world population made fertilizers and pesticides inevitable to obtain maximum efficiency from existing agricultural areas. Sulfoxaflor is currently the only member of the new sulfoximine insecticide subclass of nicotinic acetylcholine receptor agonists. In the study, it was aimed to determine the in vitro genetic, oxidative damage potential, genotoxic and apoptotic effects of three different concentrations (10 µg/mL, 20 µg/mL and 40 µg/mL) of sulfoxaflor insecticide in the cultures of blood lymphocytes. In this study, the single-cell gel electrophoresis (comet), Cytokinesis Block Micronuclues Test (MN test), flow cytometry and measurement of Catalase (CAT) enzyme activity were used to determine genotoxic, apoptotic effects and oxidative damage potential, respectively. It found that there is a decrease in CPBI values and Live cell numbers. It was observed an increase in late apoptotic and necrotic cell numbers, Micronucleus frequency, and Comet analysis parameters (GDI and DCP). There is a significant difference between negative control and all concentration of insecticide for Cytokinesis Block Proliferation Index (CBPI) values and late apoptotic, necrotic and viable cell counts. An increase in CAT enzyme levels was observed at 10 and 20 µg/mL concentrations compared to control., It is found that CAT enzyme activity was inhibited at concentrations of 40 µg/mL. This study is crucial as it is the first study to investigate the impact of Sulfoxaflor insecticide on peripheral blood lymphocyte cells. The genotoxic, oxidative damage, and apoptotic effects of Sulfoxafluor insecticide on the results obtained and its adverse effects on other organisms raise concerns about health and safety.
Collapse
Affiliation(s)
- Cebrail Sınacı
- Department of Biology, Graduate School of Natural and Applied Science, Mersin University, Mersin, Turkey
| | - Ayla Çelik
- Department of Biology, Faculty of Science and Letters, Mersin University, Mersin, Turkey
| | - Derya Yetkin
- Advanced Technology, Education, Research and Application Center, MersinUniversity, Mersin, Turkey
| | - Sertan Çevik
- Department of Molecular Biology and Genetic, Faculty of Science and Letters, Harran University, Şanlıurfa, Turkey
| | - Gizem Güler
- Department of Biology, Graduate School of Natural and Applied Science, Mersin University, Mersin, Turkey
| |
Collapse
|
6
|
Tong Z, Shen Y, Meng D, Yi X, Sun M, Dong X, Chu Y, Duan J. Ecological threat caused by malathion and its chiral metabolite in a honey bee-rape system: Stereoselective exposure risk and the mechanism revealed by proteome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162585. [PMID: 36870510 DOI: 10.1016/j.scitotenv.2023.162585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Honey bees play an important role in the ecological environment. Regrettably, a decline in honey bee colonies caused by chemical insecticides has occurred throughout the world. Potential stereoselective toxicity of chiral insecticides may be a hidden source of danger to bee colonies. In this study, the stereoselective exposure risk and mechanism of malathion and its chiral metabolite malaoxon were investigated. The absolute configurations were identified using an electron circular dichroism (ECD) model. Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for chiral separation. In pollen, the initial residues of malathion and malaoxon enantiomers were 3571-3619 and 397-402 μg/kg, respectively, and R-malathion degraded relatively slowly. The oral LD50 values of R-malathion and S-malathion were 0.187 and 0.912 μg/bee with 5 times difference, respectively, and the malaoxon values were 0.633 and 0.766 μg/bee. The Pollen Hazard Quotient (PHQ) was used to evaluate exposure risk. R-malathion showed a higher risk. An analysis of the proteome, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and subcellular localization, indicated that energy metabolism and neurotransmitter transport were the main affected pathways. Our results provide a new scheme for the evaluation of the stereoselective exposure risk of chiral pesticides to honey bees.
Collapse
Affiliation(s)
- Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yan Shen
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - DanDan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - XiaoTong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - MingNa Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - JinSheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China.
| |
Collapse
|
7
|
Yuan T, Jiao H, Ai L, Chen Y, Hu D, Lu P. Characterization of Sulfoxaflor and Its Metabolites on Survival, Growth, Reproduction, Biochemical Markers, and Transcription of Genes of Daphnia magna. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6424-6433. [PMID: 37070642 DOI: 10.1021/acs.jafc.2c08748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sulfoxaflor is a promising neonicotinoid. However, the negative implications of sulfoxaflor on nontarget aquatic organisms have been rarely studied. In this study, the risks of sulfoxaflor and its main metabolites X11719474 and X11519540 on Daphnia magna were characterized, including acute toxicity, reproduction, swimming behavior, biochemical markers, and gene transcription. Acute toxicity measurements indicated that X11719474 and X11519540 have high toxicity than the parent compound sulfoxaflor. Chronic exposure reduced reproduction and delayed the birth of the firstborn D. magna. Swimming behavior monitoring showed that exposure to three compounds stimulated swimming behavior. The induction of catalase, superoxide dismutase, and acetylcholinesterase activities was observed with oxidative stress, whereas malondialdehyde content was remarkably increased with exposure to sulfoxaflor, X11719474, and X11519540. Moreover, transcriptomics profiles showed that sulfoxaflor, X11719474, and X11519540 induced KEGG pathways related to cellular processes, organismal systems, and metabolisms. The findings present valuable insights into the prospective hazards of these pesticides and emphasize the critical importance of conducting a systematic evaluation of combining antecedents and their metabolites.
Collapse
Affiliation(s)
- Tingting Yuan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Jiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lina Ai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yafang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences, Huitong, Hunan 418300, China
| |
Collapse
|
8
|
Zhou X, Deng Y, Wang R, Wang F, Cui H, Hu D, Lu P. Toxic effects of imidacloprid and sulfoxaflor on Rana nigromaculata tadpoles: growth, antioxidant indices and thyroid hormone-related endocrine system. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
|
9
|
Jiao H, Yuan T, Wang X, Zhou X, Ming R, Cui H, Hu D, Lu P. Biochemical, histopathological and untargeted metabolomic analyses reveal hepatotoxic mechanism of acetamiprid to Xenopus laevis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120765. [PMID: 36455769 DOI: 10.1016/j.envpol.2022.120765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Acetamiprid, a commonly detected neonicotinoid in aquatic ecosystems, poses a threat to aquatic non-target organisms. However, limited information is available on the toxic effects of acetamiprid on nontarget aquatic organisms. This study assessed the toxic effects of acetamiprid on Xenopus laevis, a typical model organism. The acute toxicity for 96 h revealed that acetamiprid had detrimental effects with a median lethal concentration (LC50) value of 64.48 mg/L. Toxicity assays, including oxidative stress, histopathology and untargeted metabolomics of acetamiprid to X. laevis, were performed for 28 d at 1/10 and 1/100 LC50 by studying the liver, which is the most antioxidant and major metabolic organ. The results demonstrated that acetamiprid exposure significantly changed the oxidant status of and caused histological damage to the liver. Furthermore, the untargeted metabolomic analysis based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified the endogenous metabolites that were significantly altered. There were 89 differential metabolites compared to the controls: 64 in the 1/10 LC50 group, 47 in the 1/100 LC50 group, and 23 metabolites in the 1/10 LC50 group were the same as those in the 1/100 LC50 group. Sixteen pathways that were mainly associated with amino acid metabolism and lipid metabolism, such as sphingolipid metabolism, glycerophospholipid metabolism and histidine metabolism, were disrupted, revealing the hepatotoxic effects of acetamiprid on X. laevis at the molecular level. These findings provide crucial information for evaluating the aquatic risks of neonicotinoids.
Collapse
Affiliation(s)
- Hui Jiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Tingting Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiaohuan Wang
- Guizhou Station of Plant Protection and Quarantine, China
| | - Xia Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Renyue Ming
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Honghao Cui
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
10
|
He R, Guo D, Lin C, Zhang WG, Fan J. Enantioselective bioaccumulation, oxidative stress, and thyroid disruption assessment of cis-metconazole enantiomers in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106205. [PMID: 35640362 DOI: 10.1016/j.aquatox.2022.106205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/22/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Chiral triazole pesticides may cause enantioselectively adverse effects to non-target organisms. In this work, we employed zebrafish as an aquatic organism model to explore stereoselective acute toxicity, bioaccumulation, oxidative stress, and thyroid disruption of cis-metconazole enantiomers. The median lethal concentration values of (1S, 5R)-metconazole, (1R, 5S)-metconazole, and the mixture of them against zebrafish were 4.01, 2.61 and 3.17 mg⋅L-1, respectively. (1R, 5S)-Metconazole was preferentially bioaccumulated in zebrafish than (1S, 5R)-metconazole, and the bioconcentration factor of (1R, 5S)-metconazole was 1.28-fold larger than that of (1S, 5R)-metconazole. Then, the activity order of catalase, superoxide dismutase, and glutathione-S transferase enzymes in zebrafish was expressed as (1S, 5R)-metconazole > the mixture > (1R, 5S)-metconazole, while the order of malondialdehyde content in zebrafish was (1R, 5S)-metconazole > the mixture > (1S, 5R)-metconazole. Moreover, cis-metconazole exhibited enantioselective regulation effects on the levels of triiodothyronine and thyroxine in zebrafish, and (1R, 5S)-metconazole possessed stronger thyroid disruption ability to zebrafish than the others. By virtue of molecular docking methodology, the binding affair and docking energy results supported that interactions between (1R, 5S)-metconazole and thyroid hormone receptors were much stronger than those between (1S, 5R)-metconazole and same receptors. This study of enantioselective evaluation of cis-metconazole in zebrafish can provide favorable information for risk assessments of chiral pesticides toward environment and health of aquatic organisms.
Collapse
Affiliation(s)
- Rujian He
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Chun Lin
- School of Logistics, Beijing Normal University, Zhuhai Campus, Zhuhai 519087, China
| | - Wei-Guang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|