1
|
Lin MW, Lin CH, Chang JR, Chiang HH, Wu TH, Lin CS. The influence of PM2.5 exposure on SARS-CoV-2 infection via modulating the expression of angiotensin converting enzyme II. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136887. [PMID: 39700942 DOI: 10.1016/j.jhazmat.2024.136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Particulate matter 2.5 (PM2.5) pollution and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are the greatest environmental health issues worldwide. Several statistics revealed the significant positive correlation between the morbidity of coronavirus disease-19 (COVID-19) and the levels of air pollution. Nevertheless, there is no direct experimental evidence to indicate the effect of PM2.5 exposure on SARS-CoV-2 infection. The objective of this study was to evaluate whether the infection of SARS-CoV-2 affected by PM2.5 through angiotensin-converting enzyme II (ACE2) expression enhances and investigate the function of ACE2 in lung injury induced by PM2.5. An animal model of PM2.5-induced lung injury was established using wild-type (WT, C57BL/6), human ACE2 transgenic (K18-hACE2 TG), and murine ACE2 gene knockout (mACE2 KO) mice. The results indicate that PM2.5 exposure facilitates SARS-CoV-2 infection through inducing ACE2 expression in vitro (10 μg/mL) and in vivo (6.25 mg/kg/day in 50 μL saline). The levels of ACE, inflammatory cytokines, and mitogen-activated protein kinase (MAPK) proteins in WT, K18-hACE TG and mACE2 KO mice were significantly increased after PM2.5 instillation. The severest PM2.5-induced lung damage was observed in mACE2 KO mice. In summary, ACE2 plays a double-edged sword role in lung injury, PM2.5 exposure contributed to SARS-CoV-2 infection through inducing ACE2 expression, but ACE2 also protected pulmonary inflammation from PM2.5 challenge.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Jia-Rong Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Hua-Hsin Chiang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Ting-Hsuan Wu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| |
Collapse
|
2
|
Shahbaz MA, Kuivanen S, Mussalo L, Afonin AM, Kumari K, Behzadpour D, Kalapudas J, Koivisto AM, Penttilä E, Löppönen H, Jalava P, Vapalahti O, Balistreri G, Lampinen R, Kanninen KM. Exposure to urban particulate matter alters responses of olfactory mucosal cells to SARS-CoV-2 infection. ENVIRONMENTAL RESEARCH 2024; 249:118451. [PMID: 38341073 DOI: 10.1016/j.envres.2024.118451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Suvi Kuivanen
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Laura Mussalo
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Alexey M Afonin
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Kajal Kumari
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Donya Behzadpour
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Juho Kalapudas
- University of Eastern Finland, Brain Research Unit, Department of Neurology, School of Medicine, Kuopio, Finland
| | - Anne M Koivisto
- University of Eastern Finland, Brain Research Unit, Department of Neurology, School of Medicine, Kuopio, Finland; Kuopio University Hospital, Department of Neurology, Neuro Centre, Kuopio, Finland; University of Helsinki, Faculty of Medicine, Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Helsinki, Finland
| | - Elina Penttilä
- University of Eastern Finland and Kuopio University Hospital, Department of Otorhinolaryngology, Kuopio, Finland
| | - Heikki Löppönen
- University of Eastern Finland and Kuopio University Hospital, Department of Otorhinolaryngology, Kuopio, Finland
| | - Pasi Jalava
- University of Eastern Finland, Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - Olli Vapalahti
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland
| | - Giuseppe Balistreri
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland
| | - Riikka Lampinen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Katja M Kanninen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.
| |
Collapse
|
3
|
Lei J, Liu C, Meng X, Sun Y, Huang S, Zhu Y, Gao Y, Shi S, Zhou L, Luo H, Kan H, Chen R. Associations between fine particulate air pollution with small-airway inflammation: A nationwide analysis in 122 Chinese cities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123330. [PMID: 38199484 DOI: 10.1016/j.envpol.2024.123330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/24/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Alveolar nitric oxide is a non-invasive indicator of small-airway inflammation, a key pathophysiologic mechanism underlying lower respiratory diseases. However, no epidemiological studies have investigated the impact of fine particulate matter (PM2.5) exposure on the concentration of alveolar nitric oxide (CANO). To explore the associations between PM2.5 exposure in multiple periods and CANO, we conducted a nationwide cross-sectional study in 122 Chinese cities between 2019 and 2021. Utilizing a satellite-based model with a spatial resolution of 1 × 1 km, we matched long-term, mid-term, and short-term PM2.5 exposure for 28,399 individuals based on their home addresses. Multivariable linear regression models were applied to estimate the associations between PM2.5 at multiple exposure windows and CANO. Stratified analyses were also performed to identify potentially vulnerable subgroups. We found that per interquartile range (IQR) unit higher in 1-year average, 1-month average, and 7-day average PM2.5 concentration was significantly associated with increments of 17.78% [95% confidence interval (95%CI): 12.54%, 23.26%], 8.76% (95%CI: 7.35%, 10.19%), and 4.00% (95%CI: 2.81%, 5.20%) increment in CANO, respectively. The exposure-response relationship curves consistently increased with the slope becoming statistically significant beyond 20 μg/m3. Males, children, smokers, individuals with respiratory symptoms or using inhaled corticosteroids, and those living in Southern China were more vulnerable to PM2.5 exposure. In conclusion, our study provided novel evidence that PM2.5 exposure in long-term, mid-term, and short-term periods could significantly elevate small-airway inflammation represented by CANO. Our results highlight the significance of CANO measurement as a non-invasive tool for early screening in the management of PM2.5-related inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Jian Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Department of Occupational and Environmental Health, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yiqing Sun
- Eberly College of Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Suijie Huang
- Guangzhou Homesun Medical Technology Co., Ltd, Guangdong, 518040, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Lu Zhou
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Huihuan Luo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Lei S, Wu S. Zang Siwei Qingfei Mixture Alleviates Inflammatory Response to Attenuate Acute Lung Injury by the ACE2/NF-κB Signaling Pathway in Mice. Comb Chem High Throughput Screen 2024; 27:2871-2884. [PMID: 37957855 DOI: 10.2174/0113862073259884231024111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious lung disease characterized by acute and severe inflammation. Upregulation of ACE2 and inhibition of the NF-κB signaling pathway attenuate LPS-induced ALI. OBJECTIVE To explore whether Zang Siwei Qingfei Mixture inhibits the development of ALI through the ACE2/NF-κB signaling pathway. METHODS Alveolar type II epithelial cells (AEC II) were identified by immunofluorescence staining and flow cytometry. C57BL/6J mice were treated with LPS to establish an ALI model. Cell viability was assessed using CCK8 assays. The levels of ACE, ACE2, p-p38/p38, p- ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 were analyzed by Western blotting. ELISA was applied to detect the levels of TNF-a, IL-6, AGT, and Ang1-7. HE staining was used to observe lung injury. The mRNA expression of ACE, ACE2, and Mas was measured by RT-qPCR. RESULTS AEC II cells were successfully isolated. Treatment with the Zang Siwei Qingfei Mixture resulted in a decrease in ACE, p-p38/p38, p-ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 levels, while increasing ACE2 levels. Zang Siwei Qingfei mixture also led to a reduction in TNF-α, IL6, and AGT levels, while increasing Ang1-7 level. Histological analysis showed that Zang Siwei Qingfei Mixture treatment improved the alveolar structure of ALI mice and reduced inflammatory infiltration. The pretreatment with MLN-4760, an ACE2 inhibitor, resulted in opposite effects compared to Zang Siwei Qingfei Mixture treatment. CONCLUSION Zang Siwei Qingfei mixture attenuates ALI by regulating the ACE2/NF-κB signaling pathway in mice. This study provides a theoretical foundation for the development of improved ALI treatments.
Collapse
Affiliation(s)
- Si Lei
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Hunan, Changsha, China
| | - Shangjie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Hunan, Changsha, China
| |
Collapse
|
5
|
Kim TY, Kim JM, Lee HL, Go MJ, Joo SG, Kim JH, Lee HS, Jeong WM, Lee DY, Kim HJ, Heo HJ. Codium fragile Suppressed Chronic PM 2.5-Exposed Pulmonary Dysfunction via TLR/TGF-β Pathway in BALB/c Mice. Antioxidants (Basel) 2023; 12:1743. [PMID: 37760047 PMCID: PMC10525573 DOI: 10.3390/antiox12091743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This study investigated the ameliorating effect of the aqueous extract of Codium fragile on PM2.5-induced pulmonary dysfunction. The major compounds of Codium fragile were identified as palmitic acid, stearic acid, and oleamide using GC/MS2 and hexadecanamide, oleamide, and 13-docosenamide using UPLC-Q-TOF/MSE. Codium fragile improved pulmonary antioxidant system deficit by regulating SOD activities and reducing GSH levels and MDA contents. It suppressed pulmonary mitochondrial dysfunction by regulating ROS contents and mitochondrial membrane potential levels. It regulated the inflammatory protein levels of TLR4, MyD88, p-JNK, p-NF-κB, iNOS, Caspase-1, TNF-α, and IL-1β. In addition, it improved the apoptotic protein expression of BCl-2, BAX, and Caspase-3 and attenuated the fibrous protein expression of TGF-β1, p-Smad-2, p-Smad-3, MMP-1, and MMP-2. In conclusion, this study suggests that Codium fragile might be a potential material for functional food or pharmaceuticals to improve lung damage by regulating oxidative stress inflammation, cytotoxicity, and fibrosis via the TLR/TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeonsang National University, Jinju 52828, Republic of Korea; (T.Y.K.); (J.M.K.); (H.L.L.); (M.J.G.); (S.G.J.); (J.H.K.); (H.S.L.); (H.-J.K.)
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeonsang National University, Jinju 52828, Republic of Korea; (T.Y.K.); (J.M.K.); (H.L.L.); (M.J.G.); (S.G.J.); (J.H.K.); (H.S.L.); (H.-J.K.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeonsang National University, Jinju 52828, Republic of Korea; (T.Y.K.); (J.M.K.); (H.L.L.); (M.J.G.); (S.G.J.); (J.H.K.); (H.S.L.); (H.-J.K.)
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeonsang National University, Jinju 52828, Republic of Korea; (T.Y.K.); (J.M.K.); (H.L.L.); (M.J.G.); (S.G.J.); (J.H.K.); (H.S.L.); (H.-J.K.)
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeonsang National University, Jinju 52828, Republic of Korea; (T.Y.K.); (J.M.K.); (H.L.L.); (M.J.G.); (S.G.J.); (J.H.K.); (H.S.L.); (H.-J.K.)
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeonsang National University, Jinju 52828, Republic of Korea; (T.Y.K.); (J.M.K.); (H.L.L.); (M.J.G.); (S.G.J.); (J.H.K.); (H.S.L.); (H.-J.K.)
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeonsang National University, Jinju 52828, Republic of Korea; (T.Y.K.); (J.M.K.); (H.L.L.); (M.J.G.); (S.G.J.); (J.H.K.); (H.S.L.); (H.-J.K.)
| | - Won Min Jeong
- Research & Development Team, Gyeongnam Anti-Aging Research Institute, Sancheong 52215, Republic of Korea; (W.M.J.); (D.Y.L.)
| | - Dong Yeol Lee
- Research & Development Team, Gyeongnam Anti-Aging Research Institute, Sancheong 52215, Republic of Korea; (W.M.J.); (D.Y.L.)
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeonsang National University, Jinju 52828, Republic of Korea; (T.Y.K.); (J.M.K.); (H.L.L.); (M.J.G.); (S.G.J.); (J.H.K.); (H.S.L.); (H.-J.K.)
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeonsang National University, Jinju 52828, Republic of Korea; (T.Y.K.); (J.M.K.); (H.L.L.); (M.J.G.); (S.G.J.); (J.H.K.); (H.S.L.); (H.-J.K.)
| |
Collapse
|
6
|
Marchetti S, Gualtieri M, Pozzer A, Lelieveld J, Saliu F, Hansell AL, Colombo A, Mantecca P. On fine particulate matter and COVID-19 spread and severity: An in vitro toxicological plausible mechanism. ENVIRONMENT INTERNATIONAL 2023; 179:108131. [PMID: 37586275 DOI: 10.1016/j.envint.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
COVID-19 pandemic had a significant impact on global public health. The spread of the disease was related to the high transmissibility of SARS-CoV-2 virus but incidence and mortality rate suggested a possible relationship with environmental factors. Air pollution has been hypothesized to play a role in the transmission of the virus and the resulting severity of the disease. Here we report a plausible in vitro toxicological mode of action by which fine particulate matter (PM2.5) could promote a higher infection rate of SARS-CoV-2 and severity of COVID-19 disease. PM2.5 promotes a 1.5 fold over-expression of the angiotensin 2 converting enzyme (ACE2) which is exploited by viral particles to enter human lung alveolar cells (1.5 fold increase in RAB5 protein) and increases their inflammatory state (IL-8 and NF-kB protein expression). Our results provide a basis for further exploring the possible synergy between biological threats and air pollutants and ask for a deeper understanding of how air quality could influence new pandemics in the future.
Collapse
Affiliation(s)
- S Marchetti
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - M Gualtieri
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy.
| | - A Pozzer
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - J Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - F Saliu
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - A L Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, United Kingdom; National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Environmental Exposures and Health at the University of Leicester, United Kingdom; National Institute for Health Research NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Leicester, United Kingdom
| | - A Colombo
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - P Mantecca
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| |
Collapse
|
7
|
Song HJ, Shin DU, Eom JE, Lim KM, Lim EY, Kim YI, Kim HJ, Song JH, Shim M, Choe H, Kim GD, Lee SY, Shin HS. Artemisia gmelinii Extract Attenuates Particulate Matter-Induced Neutrophilic Inflammation in a Mouse Model of Lung Injury. Antioxidants (Basel) 2023; 12:1591. [PMID: 37627586 PMCID: PMC10451698 DOI: 10.3390/antiox12081591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Particulate matter (PM) induces and augments oxidative stress and inflammation, leading to respiratory diseases. Although Artemisia gmelinii Weber ex Stechm has antioxidant and anti-inflammatory effects, there are no reports on whether Artemisia gmelinii extract (AGE) regulates lung inflammation in a PM-induced model. Thus, we investigated the protective effects of AGE using a PM-induced mouse lung inflammation model. AGE significantly decreased the expression of inflammatory chemokines, neutrophil extracellular trap formation, and the total number of inflammatory cells in the bronchoalveolar lavage fluid (BALF). Furthermore, AGE attenuated lung inflammation through the suppression of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway, while promoting the nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway in lung tissues. Concordant with these observations, AGE suppressed inflammatory cytokines, chemokines, reactive oxygen species, NETosis, myeloperoxidase, and neutrophil elastase by decreasing the mRNA expression of High mobility group box 1, Runt-related transcription factor 1, and Kruppel-like factor 6 in differentiated HL-60 cells. In summary, our data demonstrated that AGE suppresses PM-induced neutrophil infiltration, lung damage, and pulmonary inflammation by suppressing NF-κB/MAPK signaling pathways and enhancing the NRF2/HO-1 signaling pathway. These findings suggest that AGE administration is an effective approach for preventing and treating PM-induced respiratory inflammation.
Collapse
Affiliation(s)
- Hyeon-Ji Song
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Uk Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji-Eun Eom
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Kyung Min Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Young In Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Ha-Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ju Hye Song
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - MyeongKuk Shim
- BL Healthcare Corp., Yongin 16827, Republic of Korea; (M.S.); (H.C.)
| | - HyeonJeong Choe
- BL Healthcare Corp., Yongin 16827, Republic of Korea; (M.S.); (H.C.)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Gan PXL, Liao W, Linke KM, Mei D, Wu XD, Wong WSF. Targeting the renin angiotensin system for respiratory diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:111-144. [PMID: 37524485 DOI: 10.1016/bs.apha.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Renin-angiotensin system (RAS) plays an indispensable role in regulating blood pressure through its effects on fluid and electrolyte balance. As an aside, cumulative evidence from experimental to clinical studies supports the notion that dysregulation of RAS contributes to the pro-inflammatory, pro-oxidative, and pro-fibrotic processes that occur in pulmonary diseases like asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute lung injury (ALI). Pharmacological intervention of the various RAS components can be a novel therapeutic strategy for the treatment of these respiratory diseases. In this chapter, we first give a recent update on the RAS, and then compile, review, and analyse recent reports on targeting RAS components as treatments for respiratory diseases. Inhibition of the pro-inflammatory renin, angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and Ang II type 1 receptor (AT1R) axis, and activation of the protective ACE2, AT2R, Ang (1-7), and Mas receptor axis have demonstrated varying degrees of efficacies in experimental respiratory disease models or in human trials. The newly identified alamandine/Mas-related G-protein-coupled receptor member D pathway has shown some therapeutic promise as well. However, our understanding of the RAS ligand-and-receptor interactions is still inconclusive, and the modes of action and signaling cascade mediating the newly identified RAS receptors remain to be better characterized. Clinical data are obviously lacking behind the promising pre-clinical findings of certain well-established molecules targeting at different pathways of the RAS in respiratory diseases. Translational human studies should be the focus for RAS drug development in lung diseases in the next decade.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - W Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Singapore-HUJ Alliance for Research Enterprise, National University of Singapore, Singapore, Singapore
| | - Kira M Linke
- Department of Pharmacology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - D Mei
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - X D Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Singapore-HUJ Alliance for Research Enterprise, National University of Singapore, Singapore, Singapore; Drug Discovery and Optimization Platform, National University Health System, Singapore, Singapore.
| |
Collapse
|
9
|
Botto L, Lonati E, Russo S, Cazzaniga E, Bulbarelli A, Palestini P. Effects of PM2.5 Exposure on the ACE/ACE2 Pathway: Possible Implication in COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4393. [PMID: 36901403 PMCID: PMC10002082 DOI: 10.3390/ijerph20054393] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Particulate matter (PM) is a harmful component of urban air pollution and PM2.5, in particular, can settle in the deep airways. The RAS system plays a crucial role in the pathogenesis of pollution-induced inflammatory diseases: the ACE/AngII/AT1 axis activates a pro-inflammatory pathway counteracted by the ACE2/Ang(1-7)/MAS axis, which in turn triggers an anti-inflammatory and protective pathway. However, ACE2 acts also as a receptor through which SARS-CoV-2 penetrates host cells to replicate. COX-2, HO-1, and iNOS are other crucial proteins involved in ultrafine particles (UFP)-induced inflammation and oxidative stress, but closely related to the course of the COVID-19 disease. BALB/c male mice were subjected to PM2.5 sub-acute exposure to study its effects on ACE2 and ACE, COX-2, HO-1 and iNOS proteins levels, in the main organs concerned with the pathogenesis of COVID-19. The results obtained show that sub-acute exposure to PM2.5 induces organ-specific modifications which might predispose to greater susceptibility to severe symptomatology in the case of SARS-CoV-2 infection. The novelty of this work consists in using a molecular study, carried out in the lung but also in the main organs involved in the disease, to analyze the close relationship between exposure to pollution and the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Stefania Russo
- FIMP-Federazione Italiana Medici Pediatri, 00185 Rome, Italy
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Centre, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Centre, University of Milano-Bicocca, 20126 Milan, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Centre, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
10
|
Kuntic M, Kuntic I, Krishnankutty R, Gericke A, Oelze M, Junglas T, Bayo Jimenez MT, Stamm P, Nandudu M, Hahad O, Keppeler K, Daub S, Vujacic-Mirski K, Rajlic S, Strohm L, Ubbens H, Tang Q, Jiang S, Ruan Y, Macleod KG, Steven S, Berkemeier T, Pöschl U, Lelieveld J, Kleinert H, von Kriegsheim A, Daiber A, Münzel T. Co-exposure to urban particulate matter and aircraft noise adversely impacts the cerebro-pulmonary-cardiovascular axis in mice. Redox Biol 2022; 59:102580. [PMID: 36566737 PMCID: PMC9804249 DOI: 10.1016/j.redox.2022.102580] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Worldwide, up to 8.8 million excess deaths/year have been attributed to air pollution, mainly due to the exposure to fine particulate matter (PM). Traffic-related noise is an additional contributor to global mortality and morbidity. Both health risk factors substantially contribute to cardiovascular, metabolic and neuropsychiatric sequelae. Studies on the combined exposure are rare and urgently needed because of frequent co-occurrence of both risk factors in urban and industrial settings. To study the synergistic effects of PM and noise, we used an exposure system equipped with aerosol generator and loud-speakers, where C57BL/6 mice were acutely exposed for 3d to either ambient PM (NIST particles) and/or noise (aircraft landing and take-off events). The combination of both stressors caused endothelial dysfunction, increased blood pressure, oxidative stress and inflammation. An additive impairment of endothelial function was observed in isolated aortic rings and even more pronounced in cerebral and retinal arterioles. The increase in oxidative stress and inflammation markers together with RNA sequencing data indicate that noise particularly affects the brain and PM the lungs. The combination of both stressors has additive adverse effects on the cardiovascular system that are based on PM-induced systemic inflammation and noise-triggered stress hormone signaling. We demonstrate an additive upregulation of ACE-2 in the lung, suggesting that there may be an increased vulnerability to COVID-19 infection. The data warrant further mechanistic studies to characterize the propagation of primary target tissue damage (lung, brain) to remote organs such as aorta and heart by combined noise and PM exposure.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Matthias Oelze
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Tristan Junglas
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Paul Stamm
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Margaret Nandudu
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Karin Keppeler
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Steffen Daub
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ksenija Vujacic-Mirski
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sanela Rajlic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany; Department of Cardiothoracic and Vascular Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Lea Strohm
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Henning Ubbens
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Qi Tang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | | | - Sebastian Steven
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Thomas Berkemeier
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Hartmut Kleinert
- University Medical Center Mainz, Department for Pharmacology, Langenbeckstr. 1, 55131, Mainz, Germany
| | | | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Langenbeckstr. 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
11
|
Zhang D, Wu H, Liu D, Li Y, Zhou G, Yang Q, Liu Y. Clinical efficacy of sacubitril-valsartan combined with acute ST-segment elevation myocardial infarction after reperfusion: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:1036151. [PMID: 36531731 PMCID: PMC9751057 DOI: 10.3389/fcvm.2022.1036151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/14/2022] [Indexed: 11/03/2023] Open
Abstract
Background Several studies have investigated the combined use of sacubitril- valsartan after reperfusion in acute ST-segment elevation myocardial infarction (STEMI). However, the sample sizes of these studies were small and their results were somewhat heterogeneous. To determine the effect of sacubitril-valsartan on myocardial ischemia-reperfusion. Methods Search PubMed, EMbase, Web of Science and The Cochrane Library, CNKI database, VIP database and Wanfang digital journal full-text database for eligible articles from their date of inception up to April, 2022. All data were meta-analyzed using Review Manager 5.3 and STATA 16.0 software. Results A total of 23 studies including 2,326 patients with acute STEMI were included. These results of this meta-analysis indicated that left ventricular ejection fractions (LVEF) value within 6 months after surgery (OR, 4.29; 95% confidence interval, 3.78-4.80; P < 0.00001), left ventricular end-diastolic diameter (LVEDD) value within 6 months after surgery (OR, -3.11; 95% CI, -3.87 to -2.35; P < 0.00001) and left ventricular end-diastolic volume (LVEDV) value 6 months after operation (OR, -6.22; 95% CI, -7.10 to -5.35; P < 0.00001) are better than without sacubitril and valsartan. Conclusion To sum up the above, the results of this study suggest that sacubitril- valsartan can reduce the reperfusion injury of ischemic myocardium by improving cardiac function within a follow-up period of 6 months.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
| | - Hui Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
| | - Di Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
| | - Yunzhao Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
| | - Gang Zhou
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
| | - QingZhuo Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
| | - YanFang Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
| |
Collapse
|
12
|
Zeng Y, Jin H, Wang J, Guo C, Chen W, Tan Y, Wang L, Zhou Z. An optimized method for intratracheal instillation in mice. J Pharmacol Toxicol Methods 2022; 118:107230. [DOI: 10.1016/j.vascn.2022.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
|