1
|
Fan B, Gong Z, Xin X, Liu Y, He L, Gao Y, Ren A, Zhao N. Both evenness and dominant species identity have effects on litter decomposition. Ecol Evol 2024; 14:e11052. [PMID: 38414570 PMCID: PMC10896676 DOI: 10.1002/ece3.11052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Exploring how interactions between species evenness and dominant species identity affect litter decomposition processes is vital to understanding the relationship between biodiversity and ecosystem functioning in the context of global changes. We carried out a 127-day litter decomposition experiment under controlled conditions, with interactions of four species evenness types (high, medium, low and single species) and three dominant species identity (Leymus chinensis, Serratula centauroides, Artemisia capillaris). After collecting the remaining litter, we estimated how evenness and dominant species identity affected litter mass loss rate, carbon (C) loss rate, nitrogen (N) loss rate and remaining litter C/N directly or indirectly, and assessed relative mixture effects (RMEs) on litter mass loss. The main results are shown as follows. (1) By generalized linear models, litter mass loss rate was significantly affected by evenness after 69-day decomposition; N loss rate was affected by dominant species identity after 69-day decomposition, with treatment dominated by Serratula centauroides being at least 9.26% higher than that dominated by any of other species; and remaining litter C/N was affected by the interactions between evenness and dominant species identity after 30-, 69- and 127-day decomposition. (2) Twenty-three out of 27 RMEs were additive, and dominant species identity showed a significant effect on RMEs after 127-day decomposition. (3) By confirmatory path analyses, litter mass loss rate was affected by dominant species identity directly after 127-day decomposition, and by both species evenness and dominant species identity indirectly which was mediated by initial litter functional dispersion (FDis) after 30- and 69-day decomposition; remaining litter C/N was affected by evenness indirectly which was mediated by initial litter FDis after 127-day decomposition. These findings highlight the importance of evenness and dominant species identity on litter decomposition. The study provides insights into communities during retrogressive successions in semi-arid grasslands in the context of global changes.
Collapse
Affiliation(s)
- Baijie Fan
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinChina
| | - Ziqing Gong
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinChina
| | - Xiaojing Xin
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinChina
| | - Yulin Liu
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinChina
| | - Luoyang He
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinChina
| | - Yubao Gao
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinChina
| | - Anzhi Ren
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinChina
| | - Nianxi Zhao
- Department of Plant Biology and Ecology, College of Life ScienceNankai UniversityTianjinChina
| |
Collapse
|
2
|
Song S, Xiong K, Chi Y. Response of grassland ecosystem function to plant functional traits under different vegetation restoration models in areas of karst desertification. FRONTIERS IN PLANT SCIENCE 2023; 14:1239190. [PMID: 38148857 PMCID: PMC10749941 DOI: 10.3389/fpls.2023.1239190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
Plant functional traits serve as a bridge between plants, the environment, and ecosystem function, playing an important role in predicting the changes in ecosystem function that occur during ecological restoration. However, the response of grassland ecosystem function to plant functional traits in the context of ecological restoration in areas of karst desertification remains unclear. Therefore, in this study, we selected five plant functional traits [namely, plant height (H), specific leaf area (SLA), leaf dry matter content (LDMC), root length (RL), and root dry matter content (RDMC)], measured these along with community-weighted mean (CWM) and functional trait diversity, and combined these measures with 10 indexes related to ecosystem function in order to investigate the differences in plant functional traits and ecosystem function, as well as the relationship between plant functional traits and ecosystem functions, under four ecological restoration models [Dactylis glomerata (DG), Lolium perenne (LP), Lolium perenne + Trifolium repens (LT), and natural grassland (NG)]. We found that: 1) the Margalef index and Shannon-Wiener index were significantly lower for plant species in DG and LP than for those in NG (P<0.05), while the Simpson index was significantly higher in the former than in NG (P<0.05); 2) CWMH, CWMLDMC, and CWMRDMC were significantly higher in DG, LP, and LT than in NG, while CWMSLA was significantly lower in the former than in NG (P<0.05). The functional richness index (FRic) was significantly higher in DG and LP than in NG and LT, but the functional dispersion index (FDis) and Rao's quadratic entropy index (RaoQ) were significantly lower in DG and LP than in NG and LT (P<0.05), and there was no significant difference between DG and LP, or between NG and LT (P>0.05); 3) ecosystem function, including ecosystem productivity, carbon storage, water conservation and soil conservation, was highest in LT and lowest in NG; and 4) CWMLDMC (F=56.7, P=0.024), CWMRL (F=28.7, P=0.024), and CWMH (F=4.5, P=0.048) were the main factors affecting ecosystem function. The results showed that the mixed pasture of perennial ryegrass and white clover was most conductive to restoration of ecosystem function. This discovery has important implications for the establishment of vegetation, optimal utilization of resources, and the sustainable development of degraded karst ecosystems.
Collapse
Affiliation(s)
- Shuzhen Song
- School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Yongkuan Chi
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| |
Collapse
|
3
|
de la Riva EG, Prieto I, de Tomás Marín S, Rodríguez-Calcerrada J, Golabvand P, Galán Díaz J. Living at the edge: the functional niche occupation of woody plant communities in the submediterranean ecotone. ANNALS OF BOTANY 2023; 132:471-484. [PMID: 37724864 PMCID: PMC10666996 DOI: 10.1093/aob/mcad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND AND AIMS Submediterranean areas are rich ecotones, where slight modifications in environmental conditions can lead to substantial changes in the composition of plant communities. They thus offer an ideal scenario to examine plant community assembly. In this study, we followed a trait-based approach including intraspecific variability to elucidate (1) the relationship between niche occupancy components and species richness, (2) the processes governing the assembly of these communities and (3) the contribution of intraspecific trait variability in shaping the functional trait space. METHODS We measured eight morphological and chemical traits in 405 individuals across 60 plots located in different forest communities (Mediterranean, Eurosiberian and Mixed) coexisting within a submediterranean ecosystem in central Spain. We calculated three niche occupancy components related to Hutchinson's n-dimensional hypervolumes: the total functional volume of the community, the functional overlap between species within the community and the average functional volume per species, and then used null models to explore the relative importance of habitat filtering, limiting similarity and intraspecific variability as assembly patterns. KEY RESULTS Both habitat filtering and niche differentiation drive the community assembly of Mediterranean communities, whereas limiting similarity and hierarchical competition shape Eurosiberian communities. Intraspecific responses were mostly explained by shifts in species niches across the functional space (changes in the position of the centroids of hypervolumes). CONCLUSIONS Different assembly mechanisms govern the structure of Mediterranean, Eurosiberian and Mixed plant communities. Combining niche occupancy components with a null model approach at different spatial scales offers new insights into the mechanisms driving plant community assembly. Consideration of intraspecific variability is key for understanding the mechanisms governing species coexistence in species-rich ecotones.
Collapse
Affiliation(s)
- Enrique G de la Riva
- Area de Ecología, Facultad de Ciencias Biológicas y Ambientales, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
- Department of Ecology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 6, 03046 Cottbus, Germany
| | - Iván Prieto
- Area de Ecología, Facultad de Ciencias Biológicas y Ambientales, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Sergio de Tomás Marín
- Department of Ecology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 6, 03046 Cottbus, Germany
| | - Jesús Rodríguez-Calcerrada
- Functioning of Forest Systems in a Changing Environment (FORESCENT), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Pardis Golabvand
- Department of Ecology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 6, 03046 Cottbus, Germany
| | - Javier Galán Díaz
- Department of Plant Biology and Ecology, Universidad of Sevilla, 41012 Sevilla, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Liu M, Yin F, Xiao Y, Yang C. Grazing alters the relationship between alpine meadow biodiversity and ecosystem multifunctionality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165445. [PMID: 37442474 DOI: 10.1016/j.scitotenv.2023.165445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
The relationship between biodiversity and ecosystem multifunctionality (EMF) depends on changes in environmental disturbance. Plant and soil biological diversity can mediate EMF, but how these change in response to grazing disturbance remains unknown. Here we present an 8-year experiment on sheep grazing control in alpine grasslands in Gannan Tibetan Autonomous Prefecture, Gansu Province, China. Plant species richness, FRic (functional richness), PD (Faith's phylogenetic diversity), soil biological diversity (bacterial, fungal, and ciliate diversity), and multiple ecosystem functions were measured and calculated. The results showed that increasing grazing intensity caused a decrease in biodiversity and EMF and that biodiversity and ecosystem function differed significantly (P < 0.05) between grazing intensities. EMF was positively correlated with species richness, functional diversity, and soil bacterial diversity (P < 0.05), with 23.6 %, 10.8 %, and 12.1 % of EMF explained by changes in grazing intensity, respectively. The interaction terms of grazing intensity, plant species richness, and soil biological diversity were negatively correlated with EMF (P < 0.05). This shift in the relationship between plant or soil biological diversity and EMF occurs at a grazing intensity index of around 0.7, i.e., the impact of plant species richness on EMF is more significant when the grazing intensity index is below 0.67. The effect of soil biological diversity on EMF is more substantial when the grazing intensity index is above 0.86. Conclusion: High grazing intensity directly affects soil bulk density and pH and indirectly affects EMF by regulating plant species richness and soil biological diversity changes. Loss of plant and soil biological diversity can have extreme consequences under low and high grazing intensity disturbance conditions. Therefore, we must develop biodiversity conservation strategies for external disturbances to mitigate the effects of land use practices such as grazing disturbances.
Collapse
Affiliation(s)
- Minxia Liu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China.
| | - Fengling Yin
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Yindi Xiao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Cunliang Yang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
5
|
Jiang LM, Sattar K, Lü GH, Hu D, Zhang J, Yang XD. Different contributions of plant diversity and soil properties to the community stability in the arid desert ecosystem. FRONTIERS IN PLANT SCIENCE 2022; 13:969852. [PMID: 36092411 PMCID: PMC9453452 DOI: 10.3389/fpls.2022.969852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
As a one of the focuses of ecological research, understanding the regulation of plant diversity on community stability is helpful to reveal the adaption of plant to environmental changes. However, the relationship between plant diversity and community stability is still controversial due to the scale effect of its influencing factors. In this study, we compared the changes in community stability and different plant diversity (i.e., species, functional, and phylogenetic diversities) between three communities (i.e., riparian forest, ecotone community, and desert shrubs), and across three spatial scales (i.e., 100, 400, and 2500 m2), and then quantified the contribution of soil properties and plant diversity to community stability by using structural equation model (SEM) in the Ebinur Lake Basin Nature Reserve of the Xinjiang Uygur Autonomous Region in the NW China. The results showed that: (1) community stability differed among three communities (ecotone community > desert shrubs > riparian forest). The stability of three communities all decreased with the increase of spatial scale (2) species diversity, phylogenetic richness and the mean pairwise phylogenetic distance were higher in ecotone community than that in desert shrubs and riparian forest, while the mean nearest taxa distance showed as riparian forest > ecotone community > desert shrubs. (3) Soil ammonium nitrogen and total phosphorus had the significant direct negative and positive effects on the community stability, respectively. Soil ammonium nitrogen and total phosphorus also indirectly affected community stability by adjusting plant diversity. The interaction among species, functional and phylogenetic diversities also regulated the variation of community stability across the spatial scales. Our results suggested that the effect of plant diversities on community stability were greater than that of soil factors. The asynchronous effect caused by the changes in species composition and functional traits among communities had a positive impact on the stability. Our study provided a theoretical support for the conservation and management of biodiversity and community functions in desert areas.
Collapse
Affiliation(s)
- La-Mei Jiang
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Kunduz Sattar
- Xinjiang Uygur Autonomous Region Forestry Planning Institute, Ürümqi, China
| | - Guang-Hui Lü
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Dong Hu
- College of Life Science, Northwest University, Xi’an, China
| | - Jie Zhang
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Xiao-Dong Yang
- College of Geography and Tourism Culture, Ningbo University, Ningbo, China
| |
Collapse
|