1
|
Jiao Y, Jia J, Gu J, Wang S, Zhou Q, Li H, Li L. Insights into the enhanced adsorption of glyphosate by dissolved organic matter in farmland Mollisol: effects and mechanisms of action. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:459. [PMID: 39348086 DOI: 10.1007/s10653-024-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Dissolved organic matter (DOM) is easy to combine with residual pesticides and affect their morphology and environmental behavior. Given that the binding mechanism between DOM and the typical herbicide glyphosate in soil is not yet clear, this study used adsorption experiments, multispectral techniques, density functional theory, and pot experiments to reveal the interaction mechanism between DOM and glyphosate on Mollisol in farmland and their impact on the environment. The results show that the adsorption of glyphosate by Mollisol is a multilayer heterogeneous chemical adsorption process. After adding DOM, due to the early formation of DOM and glyphosate complex, the adsorption process gradually became dominated by single-layer chemical adsorption, and the adsorption capacity increased by 1.06 times. Glyphosate can quench the endogenous fluorescence of humic substances through a static quenching process dominated by hydrogen bonds and van der Waals forces, and instead enhance the fluorescence intensity of protein substances by affecting the molecular environment of protein molecules. The binding of glyphosate to protein is earlier, of which affinity stronger than that of humic acid. In this process, two main functional groups (C-O in aromatic groups and C-O in alcohols, ethers and esters) exist at the binding sites of glyphosate and DOM. Moreover, the complexation of DOM and glyphosate can effectively alleviate the negative impact of glyphosate on the soil. This study has certain theoretical guidance significance for understanding the environmental behavior of glyphosate and improving the sustainable utilization of Mollisol.
Collapse
Affiliation(s)
- Yaqi Jiao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Junxin Jia
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Jiaying Gu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Sa Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Qin Zhou
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Hui Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China
| | - Li Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150006, People's Republic of China.
| |
Collapse
|
2
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
3
|
Luo H, Tu C, Liu C, Zeng Y, He D, Zhang A, Xu J, Pan X. Probing the molecular interaction between photoaged polystyrene microplastics and fulvic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170933. [PMID: 38360324 DOI: 10.1016/j.scitotenv.2024.170933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
As emerging contaminants, microplastics (MPs) are becoming a matter of global concern, and they have complex interactions with dissolved organic matter (DOM) widely present in aqueous environments. Here, we investigate the molecular interactions between aged polystyrene microplastics (PS-MPs) and fulvic acid (FA) under neutral conditions using a series of analytical techniques. The structural changes of FA and the binding interactions of PS-MPs with FA at a molecular level were explored by fluorescence and FT-IR combined with two-dimensional correlation spectroscopy (2D-COS). Results showed that photoaging of PS-MPs changed the sequence of structural variations with FA. Atomic force microscopy-infrared spectroscopy (AFM-IR) strongly demonstrated that the surface roughness of both pristine and aged PS-MPs greatly increased after FA addition. Meanwhile, AFM-IR and Raman spectroscopy revealed a stronger interaction between aged PS-MPs and FA. The content of oxygen-containing functional groups in PS-MPs increased after aging and after binding with FA, and surface distribution of these functional groups also changed. XPS analyses indicated that the oxygen content in PS-MPs increased after the interaction with FA and the increase in oxygen content was even greater in aged PS-MPs. Overall, these research findings are useful to understand the environmental impacts of DOM-MPs interactions and to address the uncertainty of MPs aging effect on their environmental behavior in aquatic ecosystems.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Chaolin Tu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenyang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Yu C, Peng M, Wang X, Pan X. Photochemical demethylation of methylmercury (MeHg) in aquatic systems: A review of MeHg species, mechanisms, and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123297. [PMID: 38195023 DOI: 10.1016/j.envpol.2024.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Photodemethylation is the major pathway of methylmercury (MeHg) demethylation in surface water before uptake by the food chain, whose mechanisms and influence factors are still not completely understood. Here, we review the current knowledge on photodemethylation of MeHg and divide MeHg photolysis into three pathways: (1) direct photodemethylation, (2) free radical attack, and (3) intramolecular electron or energy transfer. In aquatic environments, dissolved organic matter is involved into all above pathways, and due to its complex compositions, properties and concentrations, DOM poses multiple functions during the PD of MeHg. DOM-MeHg complex (mainly by sulfur-containing molecules) might weaken the C-Hg bond and enhance PD through both direct and indirect pathways. In special, synergistic effects of both strong binding sites and chromophoric moieties in DOM might lead to intramolecular electron or energy transfer. Moreover, DOM might play a role of radical scavenger; while triplet state DOM, which is generated by chromophoric DOM under light, might become a source of free radicals. Apart from DOMs, transition metals, halides, NO3-, NO2-, and carbonates also act as radical initialaters or scavengers, and significantly pose effects on radical demethylation, which is generally mediated by hydroxyl radicals and singlet oxygen. Environmental factors such as pH, light wavelength, light intensity, dissolved oxygen, salinity, and suspended particles also affect the PD of MeHg. This study assessed previously published works on three major mechanisms, with the goal of providing general estimates for photodemethylation under various environment factors according to know effects, and highlighting the current uncertainties for future research directions.
Collapse
Affiliation(s)
- Chenghao Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mao Peng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
5
|
Yang L, Chen L, Zhuang WE, Zhu Z. Unveiling changes in the complexation of dissolved organic matter with Pb(II) by photochemical and microbial degradation using fluorescence EEMs-PARAFAC. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122982. [PMID: 37984478 DOI: 10.1016/j.envpol.2023.122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Dissolved organic matter (DOM) is very important in determining the speciation, behaviors, and risk of metal pollutants in aquatic ecosystems. Photochemical and microbial degradation are key processes in the cycling of DOM, yet their effects on the DOM-Pb(II) interaction remain largely unknown. This was studied by examining the complexation of river DOM with Pb(II) after degradation, using fluorescence quenching titration and excitation-emission matrices-parallel factor analysis (EEMs-PARAFAC). Three humic-like and two protein-like components were identified, with strong removals of humic-like components and decreasing average molecular weight and humification degree of DOM by photo- and photo-microbial degradation. The changes in humic-like abundance and structure resulted in notable weakening of their interaction with Pb(II). The tryptophan-like C2 was also mainly removed by photo-degradation, while the tyrosine-like C3 could be either removed or accumulated. The Pb(II)-binding of protein-like components was generally weaker but was enhanced in some degradation groups, which might be related to the lowering competition from humic-like components. The binding parameters correlated significantly with the DOM indices, which were dominated by photo-degradation for humic-like components but by seasonal variations for the tyrosine-like component. These results have implications for understanding the key mechanisms underlying the variability of the DOM-metal interaction in aquatic environments.
Collapse
Affiliation(s)
- Liyang Yang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China.
| | - Linwei Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Wan-E Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Zhuoyi Zhu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
6
|
Liang W, Wei S, Lan L, Chen J, Zhou Y, Zhao J, Wang H, Gao R, Zeng F. Effect of microplastics on the binding properties of Pb(ii) onto dissolved organic matter: insights from fluorescence spectra and FTIR combined with two-dimensional correlation spectroscopy. RSC Adv 2023; 13:24201-24210. [PMID: 37583675 PMCID: PMC10423972 DOI: 10.1039/d3ra04189a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Heavy metal cations are a typical type of inorganic pollutant that has persistent distribution characteristics in aquatic environments and are easily adsorbed on carriers, posing serious threats to ecological safety and human health. Some studies have shown that the coexistence of dissolved organic matter (DOM) and microplastics (MPs) promotes the adsorption of heavy metal cations, but the mechanism of promoting the adsorption process has not been thoroughly studied. In this study, the effect of polystyrene microplastics (PSMPs) on the binding properties of Pb2+ onto humic acid (HA) in aquatic environments was investigated by spectral analysis and two-dimensional correlation (2D-COS) analysis. When PSMPs co-existed with HA, the adsorption capacity of Pb2+ increased. On the one hand, Pb2+ is directly adsorbed on HA through the mechanism of complexation reaction, ion exchange and electrostatic interaction. On the other hand, Pb2+ is first adsorbed on PSMPs by electrostatic action and indirectly adsorbed on HA in the form of PSMPs-Pb2+ owing to the interaction between HA and PSMPs, which increases the adsorption amount of Pb2+ on HA. This study is significant for studying the migration and regression of heavy metal cation contaminants when PSMPs co-exist with DOM in an aqueous environment.
Collapse
Affiliation(s)
- Weiqian Liang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Shuyin Wei
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Jinfeng Chen
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Jiawei Zhao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Hao Wang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| |
Collapse
|
7
|
Abdelhafiz MA, Liu J, Jiang T, Pu Q, Aslam MW, Zhang K, Meng B, Feng X. DOM influences Hg methylation in paddy soils across a Hg contamination gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121237. [PMID: 36758923 DOI: 10.1016/j.envpol.2023.121237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Rice paddies provide optimum conditions for Hg methylation, and paddy soil is a hot spot for Hg methylation and the predominant source of methylmercury (MeHg) accumulated in rice grains. The role of dissolved organic matter (DOM) in controlling Hg bioavailability and methylation in rice paddy systems remains unclear. Paddy soils from eight various cultivation sites in China were chosen to investigate the variations in soil DOM and the influence of DOM concentration and optical characteristics on Hg methylation in rice paddy systems. In the present study, 151 rhizosphere soil samples were collected, and UV-Vis absorption and fluorescent spectroscopy were used to identify the optical properties of DOM. The relationship between MeHg and DOM's optical property indices revealed the production of MeHg consumes lower molecular weight DOM. Moreover, the correlation between DOM concentration and its optical characteristics highlighted the significant role of humic components on MeHg variability in paddy soil. Variation and correlation results demonstrated the allochthonous origin of DOM in the Hg-contaminated soil, with a higher molecular weight and humic character of DOM, as well as the dominant role of autochthonous DOM in promoting Hg methylation in uncontaminated soil. The current study indicated that soil organic matter and its dissolved fractions tend to limit Hg bioavailability and subsequently diminish MeHg production in contaminated paddy soils. Furthermore, the leading roles of allochthonous DOM in protecting MeHg from degradation and autochthonous DOM signatures in enhancing MeHg production in paddy soils. Overall, these findings provide insight into the correlative distributions of DOM and Hg along a Hg concentration gradient in paddy soil, thereby highlighting their potential role in controlling Hg bioavailability and regulating Hg methylation in the soil ecosystems.
Collapse
Affiliation(s)
- Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Geology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Tao Jiang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
8
|
Luo H, Liu C, He D, Sun J, Zhang A, Li J, Pan X. Interactions between polypropylene microplastics (PP-MPs) and humic acid influenced by aging of MPs. WATER RESEARCH 2022; 222:118921. [PMID: 35932707 DOI: 10.1016/j.watres.2022.118921] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
As an emerging pollutant, microplastics (MPs) may interact with dissolved organic matter (DOM) which is prevalent in the aqueous environment. Meanwhile, the aging of MPs in the actual environment increases the uncertainty of their environmental fate. Here, the interaction mechanisms between pristine and aged polypropylene microplastics (PP-MPs) and humic acid (HA) at pH 7.0 were explored. Microstructural changes of HA were examined by fluorescence and Fourier transformation infrared (FT-IR) spectroscopy. Atomic force microscopy coupled with infrared (AFM-IR) and micro-Raman techniques were used to characterize and analyze the interacted PP-MPs. The addition of HA increased the surface roughness of both pristine and aged PP-MPs. Results of AFM-IR and Raman spectra showed that the interaction of PP-MPs with HA accelerated their surface oxidation and enhanced the characteristic signals. XPS spectra showed that the oxygen content ratio of pristine and aged PP-MPs increased by 0.95% and 1.48% after the addition of HA, respectively. PP-MPs after aging interacted more strongly with HA and there was a higher affinity between them. Two-dimensional correlation spectroscopy (2D-COS) combined with FT-IR spectra further elucidated the interaction mechanism at the molecular level. This work will help to evaluate the environmental impact of MPs in ecosystems and understand their interactions with DOM.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Chenyang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|