1
|
Hu M, Wang J, Sardans J, Wu H, Ni R, Guo P, Yan R, Liao H, Liu C, Peñuelas J, Tong C. Coastal conversion alters topsoil carbon, nitrogen and phosphorus stocks and stoichiometric balances in subtropical coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:174011. [PMID: 38880140 DOI: 10.1016/j.scitotenv.2024.174011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The extensive conversion of coastal wetlands into agricultural and aquaculture areas has significant repercussions on soil nutrient balance. However, how coastal conversion specifically influences the dynamics and stoichiometry of topsoil carbon (C), nitrogen (N), and phosphorus (P) remains limited due to the considerable spatial variability and a lack of comprehensive field data. Here, we investigated the concentration and distribution of total C (TC), N (TN) and P (TP), along with their stoichiometric balance in four distinct coastal landscapes, including natural marshes and tidal flats, as well as converted agricultural croplands and ponds. The results revealed that converted croplands and ponds exhibited significantly higher concentrations of soil C, N and P, particularly in comparison to tidal flats. Furthermore, croplands and ponds have higher topsoil C stocks than tidal flats, but little difference or even lose stored C compared to marshes. Cropland soils showed considerably higher levels of available N (NH4+-N and NO3--N) and available P compared to those in natural marshes and tidal flats. The distribution of soil TC, TN, and TP demonstrated greater spatial heterogeneity in natural marshes and tidal flats, while the converted areas were more uniform and became hotspots for N and P accumulation. Coastal conversion altered soil C:N:P stoichiometry, with cropland soils exhibiting a lower N:P ratio (2.9 ± 1.1), indicating that long-term application of N and P fertilizers could decrease the N:P ratio, as P is more retained in the soil than N. Furthermore, it was observed that the dynamics of C, N and P, as well as their stoichiometry, are closely linked to soil physicochemical properties, especially soil organic matter and texture. These findings highlight that coastal conversion and associated management practices markedly affected soil C, N and P dynamics in a representative wetland area of the subtropical regions, leading to a reshaping of their stoichiometric balances, particularly in the topsoil layer.
Collapse
Affiliation(s)
- Minjie Hu
- Key Laboratory of Humid Sub-tropical Eco-geographical Processes of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Minjiang Estuary Wetland Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Fuzhou 350215, China.
| | - Jingtao Wang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Hui Wu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Ranxu Ni
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Pingping Guo
- Fujian Minjiang Estuary Wetland Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Fuzhou 350215, China; Fujian Minjiang River Estuary Wetland National Nature Reserve Administrative Office, Fuzhou 350200, China
| | - Ruibing Yan
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Haoyu Liao
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Chunya Liu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Chuan Tong
- Key Laboratory of Humid Sub-tropical Eco-geographical Processes of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Minjiang Estuary Wetland Ecosystem National Observation and Research Station, National Forestry and Grassland Administration, Fuzhou 350215, China.
| |
Collapse
|
2
|
Zhao B, Hu Y, Yu H, Chen S, Xing T, Guo S, Zhang H. A method for researching the eutrophication and N/P loads of plateau lakes: Lugu Lake as a case. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162747. [PMID: 36906015 DOI: 10.1016/j.scitotenv.2023.162747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Lugu Lake is one of the best plateau lakes in China in terms of water quality, but in recent years the eutrophication of Lugu Lake has accelerated due to high nitrogen and phosphorus loads. This study aimed to determine the eutrophication state of Lugu Lake. Specifically, the spatio-temporal variations of nitrogen and phosphorus pollution during the wet and dry seasons were investigated in Lianghai and Caohai, and the primary environmental effect factors were defined. Adopting the endogenous static release experiments and the exogenous improved export coefficient model, a novel approach (a combination of internal and external sources) was developed for the estimation of nitrogen and phosphorus pollution loads in Lugu Lake. It was indicated that the order of nitrogen and phosphorus pollution in Lugu Lake was Caohai > Lianghai and dry season > wet season. Dissolved oxygen (DO) and chemical oxygen demand (CODMn) were the main environmental factors causing nitrogen and phosphorus pollution. Endogenous nitrogen and phosphorus release rates in Lugu Lake were 668.7 and 42.0 t/a, respectively, and exogenous nitrogen and phosphorus input rates were 372.7 and 30.8 t/a, respectively. The contributions of pollution sources, in descending order, were sediment > land-use categories > residents and livestock breeding > plant decay, of which sediment nitrogen and phosphorus loads accounted for 64.3 % and 57.4 %, respectively. Regulating the endogenous release of sediment and obstructing the exogenous input from shrubland and woodland are emphasized for the management of nitrogen and phosphorus contamination in Lugu Lake. Thus, this study can serve as a theoretical foundation and technical guide for eutrophication control in plateau lakes.
Collapse
Affiliation(s)
- Bing Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Haoran Yu
- Municipal Environmental Construction Co., Ltd of Crec, Shanghai 200333, China
| | - Sikai Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Tao Xing
- Sichuan Academy of Environmental Science, Chengdu 610000, China
| | - Shanshan Guo
- China 19th Metallurgical Corporation, Chengdu 610031, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
3
|
Sun F, Zhan Y, Lin J. Effect of capping mode on control of phosphorus release from sediment by lanthanum hydroxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28102-x. [PMID: 37280493 DOI: 10.1007/s11356-023-28102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
The use of in situ active capping to control phosphorus release from sediment has attracted more and more attentions in recent years. It is important to identify the effect of capping mode on the control of phosphorus release from sediment by the in situ active capping method. In this study, the impact of capping mode on the restraint of phosphorus migration from sediment into overlying water (OW) by lanthanum hydroxide (LH) was studied. Under no suspended particulate matter (SPM) deposition condition, LH capping effectively restrained the liberation of endogenous phosphorus into OW during anoxia, and the inactivation of diffusive gradient in thin film-unstable phosphorus (UPDGT) and mobile phosphorus (PMobile) in the topmost sediment served as a significant role in the restraint of endogenous phosphorus migration into OW by LH capping. Under no SPM deposition, although the transformation of capping mode from the single high dose capping to the multiple smaller doses capping had a certain negative impact on the restraint efficiency of endogenous phosphorus liberation to OW by LH in the early period of application, it increased the stability of phosphorus in the static layer in the later period of application. Under SPM deposition condition, LH capping had the capability to mitigate the risk of endogenous phosphorus liberation into OW under anoxia conditions, and the inactivation of UPDGT and PMobile in the topmost sediment was a significant mechanism for the control of sediment phosphorus liberation into OW by LH capping. Under SPM deposition condition, the change in the covering mode from the one-time high dose covering to the multiple smaller doses covering decreased the efficiency of LH to limit the endogenous phosphorus transport into OW in the early period of application, but it increased the performance of LH to restrain the sedimentary P liberation during the later period of application. The results of this work suggest that the multiple LH capping is a promising approach for controlling the internal phosphorus loading in freshwater bodies where SPM deposition often occurs in the long run.
Collapse
Affiliation(s)
- Fujun Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
4
|
Lin J, Li Y, Zhan Y, Wu X. Combined amendment and capping of sediment with ferrihydrite and magnetite to control internal phosphorus release. WATER RESEARCH 2023; 235:119899. [PMID: 36989802 DOI: 10.1016/j.watres.2023.119899] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
This study developed novel active capping systems with recycling convenience using ferrihydrite (Fh) combined with magnetite (Mag), and investigated the effectiveness and mechanism for the restriction of endogenous phosphorus movement from sediment into overlying water (OW) by the combined use of Fh and Mag. The Fh/Mag combined amendment effectively hindered endogenous phosphorus release from sediment to OW in dissolved oxygen (DO)-deficit environment, and the immobilization of diffusion gradient in thin film-labile phosphorus (LPDGT) and mobile phosphorus in the sediment played a key role in the control of endogenous phosphorus liberation by the Fh/Mag combined amendment. Combined capping sediment with Fh and Mag effectively hindered endogenous phosphorus release from sediment to OW in anoxic environment, and the inactivation of LPDGT in the upper sediment played a key part in the control of sediment phosphorus release by the Fh/Mag mixture capping. The stability of phosphorus immobilized by the Fh/Mag combined covering layer was related to its construction way, and the majority (around 90%) of P immobilized to the Fh/Mag mixture covering layer had low risk of release in common pH (5-9) and DO-deficit environments. The Fh/Mag mixture amendment or capping did not increase the risk of sediment iron release, and it also did not produce a large impact on the diversity and richness of bacterial community in the sediment. The combined utilization of Fh and Mag as a composite amendment or capping material to prevent the internal phosphorus from being moved to OW can make full use of their respective advantages. The Fh/Mag mixture capping wrapped by permeable fabric has high potential to reduce the risk of endogenous phosphorus from sediment into OW due to its advantages of high internal phosphorus release suppression efficiency, environmental friendliness, application convenience and sustainability.
Collapse
Affiliation(s)
- Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Yan Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Xugan Wu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Carol E, Galliari MJ, Santucci L, Nuñez F, Faleschini M. Assessment of groundwater-driven dissolved nutrient inputs to coastal wetlands associated with marsh-coastal lagoons systems of the littoral of the outer Río de la Plata estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163942. [PMID: 37149199 DOI: 10.1016/j.scitotenv.2023.163942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
In coastal wetlands the hydrological dynamics and in particular the groundwater flows play a critical role in the establishment of wetlands and in the transport of salts and nutrients. The aim of the work is to analyze the role that groundwater discharge has in the dynamics of the dissolved nutrients of the wetland associated with the coastal lagoon and marshes of the Punta Rasa Natural Reserve, which is located on the coastal sector of the southern end of the Río de la Plata estuary. A monitoring network in the form of transects was generated in order to define groundwater flows and take samples of dissolved species of N and P. The presence of sandy sediments with similar granulometric profiles in all geomorphological environments determines that the underground flow occurs in a homogeneous aquifer. From the dunes and beach ridges the fresh to brackish groundwater flows with a very low hydraulic gradient towards the marsh and coastal lagoon. The contributions of N and P would derive from the degradation of the organic matter of the environment, in the case of the marsh and coastal lagoon also from the tidal flow and discharge of groundwater, and possibly from atmospheric sources in the case of N. Since in all environments oxidizing conditions dominate, nitrification is the main process which is why the most abundant species of N is the NO3-. Under oxidizing conditions, P has a greater affinity for the sediments in which it is mostly retained, registering it in low concentrations in water. The discharge of groundwater from the dunes and beach ridges provides dissolved nutrients to the marsh and coastal lagoon. However, the low hydraulic gradient and the dominant oxidizing conditions determine that the flow is scarce and that it only acquires relevance in the contribution of NO3-.
Collapse
Affiliation(s)
- E Carol
- Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Argentina; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), Argentina.
| | - M J Galliari
- Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Argentina; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), Argentina
| | - L Santucci
- Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Argentina; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), Argentina
| | - F Nuñez
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), Argentina
| | - M Faleschini
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
6
|
Qu Y, Zhao L, Jin Z, Yang H, Tu C, Che F, Russel M, Song X, Huang W. Study on the management efficiency of lanthanum/iron co-modified attapulgite on sediment phosphorus load. CHEMOSPHERE 2023; 313:137315. [PMID: 36410519 DOI: 10.1016/j.chemosphere.2022.137315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Attapulgite co-modified by lanthanum-iron (MT-LHMT) was used to study its effectiveness and mechanism in controlling phosphorus release from sediments. MT-LHMT has high adsorption capacity for phosphate and the maximum adsorption capacity of MT-LHMT to phosphate can reach 75.79 mg/g. The mechanism mainly involved electrostatic action, surface precipitation and ligand exchange between MT-LHMT bonded hydroxyl and phosphate to form La-O-P and Fe-O-P inner-sphere complexes. MT-LHMT has excellent adsorption performance in the pH range of 3-8. In addition to HCO3-, CO32- and HA- had a negative effect on the phosphorus removal of MT-LHMT, while NO3-, Cl-, SO42-, K+, Ca2+ and Mg2+ had a positive or no effect on phosphorus removal. MT-LHMT significantly reduced the risk of phosphorus release from overlying water in different dose effects and covering methods, as well as the unstable inactivation of flowing phosphorus, sediment dissolved reactive phosphorus (DRP) and available phosphorus with medium diffusion gradient in thin film in the sediment-water interface (Labile-PDGT). The MT-LHMT capping wrapped with fabric can reduce the risk of nitrogen release from sediment to overlying water more than only MT-LHMT capping. The results of this study showed that the MT-LHMT capping wrapped with fabric has high potential and can be used as an active capping material to manage the nitrogen and phosphorus load in surface water.
Collapse
Affiliation(s)
- Yihe Qu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; School of Ocean Science and Technology, Dalian University of Technology, Liaoning Province, Panjin, 124221, PR China
| | - Li Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental, Beijing, 100012, PR China
| | - Zhenghai Jin
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Haoran Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Chengqi Tu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Feifei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental, Beijing, 100012, PR China
| | - Mohammad Russel
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning Province, Panjin, 124221, PR China
| | - Xinshan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Wei Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental, Beijing, 100012, PR China.
| |
Collapse
|
7
|
Liu X, Sun D, Qin J, Zhang J, Yang Y, Yang J, Wang Z, Zhou D, Li Y, Wang X, Ning K, Yu J. Spatial distribution of soil iron across different plant communities along a hydrological gradient in the Yellow River Estuary wetland. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.979194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Iron is an important element and its biogeochemical processes are vital to the matter and energy cycles of wetland ecosystems. Hydrology greatly controls characteristics of soil property and plant community in wetlands, which can regulate the behavior of iron and its oxides. However, it remains unclear how the spatial distribution of iron and its forms in estuarine wetlands responses to hydrological conditions. Five typical plant communities along a naturally hydrological gradient in the Yellow River Estuary wetland, including Phragmites australis in freshwater marsh (FPA), Phragmites australis in salt marsh (SPA), Tamarix chinensis in salt marsh (TC), Suaeda salsa in salt marsh (SS) and Spartina alterniflora in salt marsh (SA), as sites to collect soil samples. The total iron (FeT) and three iron oxides (complexed iron, Fep; amorphous iron, Feo; free iron, Fed) in samples were determined to clarify the spatial distribution of iron and explore its impact factors. The mean contents of FeT, Fep, Feo and Fed were 28079.4, 152.0, 617.2 and 8285.3 mg⋅kg–1 of soil at 0–40 cm depth in the different sites, respectively. The means were significantly different across communities along the hydrological gradient, with the higher values for SA on the upper intertidal zone and for SPA on the lower intertidal zone, respectively. Iron and its forms were positively correlated with the total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN) and clay, and negatively correlated with electrical conductivity (EC). The indexes of iron oxides (Fep/Fed, Feo/Fed and Fed/FeT) were also different across communities, with a higher value for SA, which were positively correlated with soil water content (WC) and TOC. The results indicate that a variety of plant community and soil property derived from the difference of hydrology might result in a spatial heterogeneity of iron in estuarine wetlands.
Collapse
|