1
|
Krishna SBN, Sheik AG, Pillay K, Ahmed Hamza M, Mohammed Elamir MY, Selim S. Nanotechnology in action: silver nanoparticles for improved eco-friendly remediation. PeerJ 2024; 12:e18191. [PMID: 39372718 PMCID: PMC11456292 DOI: 10.7717/peerj.18191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Nanotechnology is an exciting area with great potential for use in biotechnology due to the far-reaching effects of nanoscale materials and their size-dependent characteristics. Silver and other metal nanoparticles have attracted a lot of attention lately because of the exceptional optical, electrical, and antimicrobial characteristics they possess. Silver nanoparticles (AgNPs) stand out due to their cost-effectiveness and abundant presence in the earth's crust, making them a compelling subject for further exploration. The vital efficacy of silver nanoparticles in addressing environmental concerns is emphasized in this thorough overview that dives into their significance in environmental remediation. Leveraging the distinctive properties of AgNPs, such as their antibacterial and catalytic characteristics, innovative solutions for efficient treatment of pollutants are being developed. The review critically examines the transformative potential of silver nanoparticles, exploring their various applications and promising achievements in enhancing environmental remediation techniques. As environmental defenders, this study advocates for intensified investigation and application of silver nanoparticles. Furthermore, this review aims to assist future investigators in developing more cost-effective and efficient innovations involving AgNPs carrying nanoprobes. These nanoprobes have the potential to detect numerous groups of contaminants simultaneously, with a low limit of detection (LOD) and reliable reproducibility. The goal is to utilize these innovations for environmental remediation purposes.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, KwaZulu-Natal, South Africa
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Abdul Gaffar Sheik
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, KwaZulu-Natal, South Africa
| | - Karen Pillay
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Manhal Ahmed Hamza
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | | | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
2
|
Chen N, Wu S, Xu Y, Lv S, Wang X, Zhang Q, Pan B. Accurately recognizing chromium species with multi-functionalized nano Au-based sensor array. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134981. [PMID: 38908187 DOI: 10.1016/j.jhazmat.2024.134981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
High-resolution identification of chromium (Cr) species, especially various organic-Cr complexes, in a convenient and economically-feasible manner is the prerequisite for achieving the advanced treatment of chromium wastewater. To this end, a colorimetric nano-Au sensor array was developed by taking advantage of the UV-spectra shift of gold nanoparticles (Au NPs) upon interaction with Cr species; specifically, four molecular modifiers [i.e., iminodiacetic acid (IDA), tripolyphosphate (TPP), cetyltrimethylammonium bromide (CTAB), and 1,5-diphenylcarbazide (DPC)] were intentionally employed for assembling nano-Au array receptors, which showed respective responses toward different Cr species through the formation of coordination, hydrophobic interaction, electrostatic attraction, and redox reaction, respectively; the "fingerprint" differences of the unique optical properties were then integrated for semi-quantitatively recognizing Cr species by pattern recognition techniques. Eleven ubiquitous Cr species [i.e., Cr(III), Cr(VI), and various Cr(III)-organic complexes] served as the model samples, which could be sensitively identified, no matter in individual or mixture mode, by the developed nano-Au sensor array on the basis of the colorimetric responses resulted from diverse nano-Au-aggregation behaviors, with excellent anti-interference ability in the simulated or actual water scenario. Attractively, the nano-Au sensor array can achieve very sensitive detection limit of the quantitative analyses of Cr species in a prompt in-situ manner, which usually requires a two-step process of separation and detection for the conventional analytical methods. Such a convenient strategy of Cr species discrimination conduces to rationally designing specific protocols for the advanced treatment of chromium wastewater.
Collapse
Affiliation(s)
- Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; Moganshan Institute ZJUT, Deqing, Zhejiang 313200, PR China
| | - Shuang Wu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ying Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Sijie Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xianhua Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
3
|
Wang P, Chen Z, Guo E, Xiang Q, Li C, Feng X, Lian L, Luo X, Chen L. Silver nanoparticles alter planktonic community structure and promote ecosystem respiration in freshwater mesocosms. ENVIRONMENTAL RESEARCH 2024; 262:119824. [PMID: 39173815 DOI: 10.1016/j.envres.2024.119824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The widespread use of silver nanoparticles (AgNPs) has resulted in their release into the aquatic environment, which threatens the health of aquatic ecosystems. Although the ecotoxicological effects of AgNPs have been widely reported at individual and population levels, the impact of long-term exposure to AgNPs on community structure and ecosystem function in aquatic ecosystems remains poorly understood. Herein, the present study investigated the effects of long-term exposure (28 d) to environmentally relevant concentrations (1 μg/L and 10 μg/L) of AgNPs on the community structure and function of freshwater ecosystems by artificially constructed 28 mesocosms freshwater ecosystem in experimental greenhouses, using plastic water tanks and food web manipulation. The results showed that long-term exposure to AgNPs significantly altered the community structure of zooplankton, phytoplankton, and bacterioplankton in the aquatic ecosystem. Exposure to 10 μg/L AgNPs significantly reduced the zooplankton density (70.3%, p < 0.05) and increased the phytoplankton biomass and bacterial richness and diversity via a "top-down effect." With regards to ecosystem function, AgNPs exposure significantly increased the respiration in freshwater ecosystems but did not have a significant effect on decomposition. The partial least squares path modeling (PLS-PM) further revealed that AgNPs may have a negative impact on ecosystem functions by reducing zooplankton community density and thus increasing phytoplankton biomass. This study is the first to show that long-term exposure to environmentally relevant concentrations of AgNPs leads to alterations in plankton community structure and promotes respiration in freshwater ecosystems. It emphasizes the need for assessing the environmental risk of long-term exposure to AgNPs at the ecosystem level.
Collapse
Affiliation(s)
- Peng Wang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zhiying Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ende Guo
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Qianqian Xiang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Chengjing Li
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xia Feng
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Lihong Lian
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xia Luo
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Liqiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
4
|
Thai NX, Chinh NT, Linh BT, Thuy TT, Hoang T. Optimizing Green Synthesis of Hydrotalcite - Silver Nanoparticles using Syzygium Nervosum based Reducing Agent. Chem Asian J 2024; 19:e202400162. [PMID: 38705851 DOI: 10.1002/asia.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Hydrotalcite-silver (HT-Ag) nanoparticles have been involved in various daily crucial applications, such as antibacterial, photocatalytic, adsorption, etc. There are many approaches to synthesizing silver nanoparticles (AgNPs) decorated on hydrotalcite (HT) surface and the most used approach is using a strong reducing agent. Thus, affordable but effective "green" reducing agents - Syzygium nervosum leaf extract, are taken into account in this work to solve several issues related to chemical reducing agents. This work aimed to assess the effect of Syzygium nervosum leaf extract as a reducing agent for green synthesis of AgNPs on HT through an optimizing process using response surface methodology (RSM) and the Box-Benken model. The optimal conditions for the synthesis of AgNPs on HT include a reaction time of 6.15 hours, a reaction temperature of 50 °C, and the ratio of diluted Syzygium nervosum leaf extract to reduce AgNO3 of 50.37 mL/mg. Under the optimal conditions, the yield of the reduction reaction reached 77.54 %, close to the theoretical value of 76.97 %. The optimization model was suitable for the experiment data. Besides, the morphology, density, and characteristics of AgNPs on the surface of HT layers have been determined by using Ultraviolet-visible spectroscopy, Field emission scanning electron microscopy (FESEM), High-resolution transmission electron microscopy (HR-TEM), selected area diffraction, X-ray diffraction, Dynamic light scattering (DLS), Infrared (IR) spectroscopy, Fluorescence emission spectroscopy (FE), Brunauer-Emmett-Teller (BET) methods. The spherical AgNPs were synthesized successfully on the surface of HT with the average particle size of 13.0±1.1 nm. Interestingly, HT-Ag hybrid materials can inhibit strongly the growth of E. coli, S. aureus as well as two antibiotic resistance bacterial strains, P. stutzeri B27, and antibiotic resistance E. coli. Especially, the antibacterial activity quantification and durability of the HT-Ag hybrid materials were also tested. Overall, the HT-Ag hybrid materials are very promising for application in material science and biomedicine fields.
Collapse
Affiliation(s)
- Nguyen Xuan Thai
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Nguyen Thuy Chinh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Bui Thao Linh
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Ha Noi, 100000, Viet Nam
| | - Tran Thanh Thuy
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Thai Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| |
Collapse
|
5
|
Do Quynh Nhu N, Nguyen TA, Tran Truc Phuong N, Tho LH, Huong VT, Pham ATT, Tran NQ, Tran NHT. Facile Fabrication of SERS Substrates by the Electrodeposition Method to Detect Pesticides with High Enhancement Effect and Long-Term Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13292-13302. [PMID: 38871669 DOI: 10.1021/acs.langmuir.4c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
In this study, surface-enhanced Raman scattering substrates were investigated by the electrodeposition method to detect low concentrations of pesticides via the electrodeposition method with different agents from silver and gold precursors on APTES-modified ITO glass. A dual-potential method supplied three electrodes and was performed with a nucleation potential of 0.7 V for 2 s and a growth potential of -0.2 V for 500 s. The Ag film produced by the electrodeposition approach has great surface uniformity and good SERS signal amplification for the thiram insecticide at low concentrations. Interestingly, the ITO/APTES/Ag substrate extensively increased the sensitivity than the other investigated ones, thanks to the adequate assistance of amino groups of APTES in the denser and hierarchical deposition of Ag NPs. These observations were additionally elucidated via finite-difference time-domain (FDTD) calculation. For thiram, the detection was set at 10-8 M with an enhancement factor of up to 3.6 × 107 times. Comparing the SERS spectra of thiram at concentrations of 10-3, 10-4, and 10-5 M with a relative standard deviation (RSD) of less than 7.0% demonstrates excellent reproducibility of the ITO/APTES/Ag substrate. In addition, the special selectivity of the ITO/APTES/Ag substrate for thiram demonstrates that these nanostructures can identify pesticides with extreme sensitivity.
Collapse
Affiliation(s)
- Nguyen Do Quynh Nhu
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Thuy-An Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Viet Nam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang City 50000, Viet Nam
| | - Nguyen Tran Truc Phuong
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Le Hong Tho
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Vu Thi Huong
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea
| | - Anh Tuan Thanh Pham
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Laboratory of Advanced Materials, University of Science, Ho Chi Minh City 700000, Viet Nam
| | - Ngoc Quang Tran
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
6
|
Sun H, Chang H, Zhu Y, Li X, Yang X, Zhou X, Wu D, Ding J, Liu Y. Strong suppression of silver nanoparticles on antibiotic resistome in anammox process. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134128. [PMID: 38555673 DOI: 10.1016/j.jhazmat.2024.134128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This study comprehensively deciphered the effect of silver nanoparticles (AgNPs) on anammox flocculent sludge, including nitrogen removal performance, microbial community structure, functional enzyme abundance, antibiotic resistance gene (ARGs) dissemination, and horizontal gene transfer (HGT) mechanisms. After long-term exposure to 0-2.5 mg/L AgNPs for 200 cycles, anammox performance significantly decreased (P < 0.05), while the relative abundances of dominant Ca. Kuenenia and anammox-related enzymes (hzsA, nirK) increased compared to the control (P < 0.05). For antibiotic resistome, ARG abundance hardly changed with 0-0.5 mg/L AgNPs but decreased by approximately 90% with 1.5-2.5 mg/L AgNPs. More importantly, AgNPs effectively inhibited MGE-mediated HGT of ARGs. Additionally, structural equation model (SEM) disclosed the underlying relationship between AgNPs, the antibiotic resistome, and the microbial community. Overall, AgNPs suppressed the anammox-driven nitrogen cycle, regulated the microbial community, and prevented the spread of ARGs in anammox flocs. This study provides a theoretical baseline for an advanced understanding of the ecological roles of nanoparticles and resistance elements in engineered ecosystems.
Collapse
Affiliation(s)
- Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China.
| | - Huanhuan Chang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuliang Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China; School of Civil Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Xiaoli Li
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Daishun Wu
- Fujian Provincial Key Laboratory of Coastal Basin Environment, School of Marine and Biochemical Engineering, Fujian Polytechnic Normal University, Fuqing, Fujiang 350300, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China
| | - Yucan Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, China; School of Civil Engineering, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
7
|
Ihsan S, Gul H, Jamila N, Khan N, Ullah R, Bari A, Nee TW, Hwang JH, Masood R. Biogenic Salvia species synthesized silver nanoparticles with catalytic, sensing, antimicrobial, and antioxidant properties. Heliyon 2024; 10:e25814. [PMID: 38375246 PMCID: PMC10875438 DOI: 10.1016/j.heliyon.2024.e25814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Salvia (Lamiaceae family) is used as a brain tonic to improve cognitive function. The species including S. plebeia and S. moorcroftiana are locally used to cure hepatitis, cough, tumours, hemorrhoids, diarrhoea, common cold, flu, and asthma. To the best of authors' knowledge, no previous study has been conducted on synthesis of S. plebeia and S. moorcroftiana silver nanoparticles (SPAgNPs and SMAgNPs). The study was aimed to synthesize AgNPs from the subject species aqueous and ethanol extracts, and assess catalytic potential in degradation of standard and extracted (from yums, candies, and snacks) dyes, nitrophenols, and antibiotics. The study also aimed at AgNPs as probe in sensing metalloids and heavy metal ions including Pb2+, Cu2+, Fe3+, Ni2+, and Zn2+. From the results, it was found that Salvia aqueous extract afforded stable AgNPs in 1:9 and 1:15 (quantity of aqueous extract and silver nitrate solution concentration) whereas ethanol extract yielded AgNPs in 1:10 (quantity of ethanol extract and silver nitrate solution concentration) reacted in sunlight. The size of SPAgNPs and SMAgNPs determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were 21.7 nm and 19.9 nm, with spherical, cylindrical, and deep hollow morphology. The synthesized AgNPs demonstrated significant potential as catalyst in dyes; Congo red (85 %), methylene blue (75 %), Rhodamine B (<50 %), nitrophenols; ortho-nitrophenol (95-98 %) and para-nitrophenol (95-98 %), dyes extracted from food samples including yums, candies, and snacks. The antibiotics (amoxicillin, doxycycline, levofloxacin) degraded up to 80 %-95 % degradation. Furthermore, the synthesized AgNPs as probe in sensing of Pb2+, Cu2+, and Fe3+ in Kabul river water, due to agglomeration, caused a significant decrease and bathochromic shift of SPR band (430 nm) when analyzed after 30 min. The Pb2+ ions was comparatively more agglomerated and chelated. Thus, the practical applicability of AgNPs in Pb2+ sensing was significant. Based on the results of this research study, the synthesized AgNPs could provide promising efficiency in wastewater treatment containing organic dyes, antibiotics, and heavy metals.
Collapse
Affiliation(s)
- Sana Ihsan
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Hajera Gul
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Nargis Jamila
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tan Wen Nee
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Joon Ho Hwang
- Nanobio Research Center, Jeonnam Bioindustry Foundation (JBF), Jangsung-gun, Jeollanam-do, 57248, South Korea
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
8
|
Riva L, Dotti A, Iucci G, Venditti I, Meneghini C, Corsi I, Khalakhan I, Nicastro G, Punta C, Battocchio C. Silver Nanoparticles Supported onto TEMPO-Oxidized Cellulose Nanofibers for Promoting Cd 2+ Cation Adsorption. ACS APPLIED NANO MATERIALS 2024; 7:2401-2413. [PMID: 38298253 PMCID: PMC10825820 DOI: 10.1021/acsanm.3c06052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
Nanocellulose constitutes a sustainable and biobased solution both as an efficient sorbent material for water treatment and as support for other inorganic nanomaterials with sorbent properties. Herein, we report the synthesis of a nanocomposite by deposition of in situ-generated silver nanoparticles (AgNPs) onto TEMPO-oxidized cellulose nanofibers (TOCNFs). Following an in-depth analytical investigation, we unveil for the first time the key role of AgNPs in enhancing the adsorption efficiency of TOCNF toward Cd2+ ions, chosen as model heavy metal contaminants. The obtained nanocomposite shows a value of Cd2+ sorption capacity at equilibrium from 150 mg L-1 ion aqueous solutions of ∼116 mg g-1 against the value of 78 mg g-1 measured for TOCNF alone. A combination of field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) analyses suggests that Cd2+ ions are mainly adsorbed in the neighborhood of AgNPs. However, XPS characterization allows us to conclude that the role of AgNPs relies on increasing the exposure of carboxylic groups with respect to the original TOCNF, suggesting that these groups are still responsible for absorption. In fact, X-ray absorption spectroscopy (XAS) analysis of the Cd-K edge excludes a direct interaction between Ag0 and Cd2+, supporting the XPS results and confirming the coordination of the latter with carboxyl groups.
Collapse
Affiliation(s)
- Laura Riva
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy
| | - Anna Dotti
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy
| | - Giovanna Iucci
- Department
of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Iole Venditti
- Department
of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Carlo Meneghini
- Department
of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Ilaria Corsi
- Department
of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Ivan Khalakhan
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
| | - Gloria Nicastro
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy
| | - Carlo Punta
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy
| | - Chiara Battocchio
- Department
of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| |
Collapse
|
9
|
Ouyang B, Wei D, Wu B, Yan L, Gang H, Cao Y, Chen P, Zhang T, Wang H. In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metal-Based Nanomaterials and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303153. [PMID: 37721195 DOI: 10.1002/smll.202303153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The global pandemic and excessive use of antibiotics have raised concerns about environmental health, and efforts are being made to develop alternative bactericidal agents for disinfection. Metal-based nanomaterials and their derivatives have emerged as promising candidates for antibacterial agents due to their broad-spectrum antibacterial activity, environmental friendliness, and excellent biocompatibility. However, the reported antibacterial mechanisms of these materials are complex and lack a comprehensive understanding from a coherent perspective. To address this issue, a new perspective is proposed in this review to demonstrate the toxic mechanisms and antibacterial activities of metal-based nanomaterials in terms of energy conversion and electron transfer. First, the antimicrobial mechanisms of different metal-based nanomaterials are discussed, and advanced research progresses are summarized. Then, the biological intelligence applications of these materials, such as biomedical implants, stimuli-responsive electronic devices, and biological monitoring, are concluded based on trappable electrical signals from electron transfer. Finally, current improvement strategies, future challenges, and possible resolutions are outlined to provide new insights into understanding the antimicrobial behaviors of metal-based materials and offer valuable inspiration and instructional suggestions for building future intelligent environmental health.
Collapse
Affiliation(s)
- Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingzheng Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
- School of Metallurgy and Environment and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South, University, Changsha, 410083, China
| |
Collapse
|
10
|
Dong Y, Xie Y, Ma X, Yan L, Yu HY, Yang M, Abdalkarim SYH, Jia B. Multi-functional nanocellulose based nanocomposites for biodegradable food packaging: Hybridization, fabrication, key properties and application. Carbohydr Polym 2023; 321:121325. [PMID: 37739512 DOI: 10.1016/j.carbpol.2023.121325] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Nowadays, non-degradable plastic packaging materials have caused serious environmental pollution, posing a threat to human health and development. Renewable eco-friendly nanocellulose hybrid (NCs-hybrid) composites as an ideal alternative to petroleum-based plastic food packaging have been extensively reported in recent years. NCs-hybrids include metal, metal oxides, organic frameworks (MOFs), plants, and active compounds. However, no review systematically summarizes the preparation, processing, and multi-functional applications of NCs-hybrid composites. In this review, the design and hybridization of various NCs-hybrids, the processing of multi-scale nanocomposites, and their key properties in food packaging applications were systematically explored for the first time. Moreover, the synergistic effects of various NCs-hybrids on several properties of composites, including mechanical, thermal, UV shielding, waterproofing, barrier, antimicrobial, antioxidant, biodegradation and sensing were reviewed in detailed. Then, the problems and advances in research on renewable NCs-hybrid composites are suggested for biodegradable food packaging applications. Finally, a future packaging material is proposed by using NCs-hybrids as nanofillers and endowing them with various properties, which are denoted as "PACKAGE" and characterized by "Property, Application, Cellulose, Keen, Antipollution, Green, Easy."
Collapse
Affiliation(s)
- Yanjuan Dong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Yao Xie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Xue Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Ling Yan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
| | - Mingchen Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Bowen Jia
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| |
Collapse
|
11
|
Benali F, Boukoussa B, Issam I, Iqbal J, Mokhtar A, Hachemaoui M, Habeche F, Hacini S, Abboud M. Zinc nanoparticles encapsulated in porous biopolymer beads for reduction of water pollutants and antimicrobial activity. Int J Biol Macromol 2023; 248:125832. [PMID: 37473883 DOI: 10.1016/j.ijbiomac.2023.125832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
This work focuses on the preparation of composite beads from alginate crosslinked with copper at several loading percent and also loaded with ZnNPs. Th obtained samples were applied as catalysts for the reduction of the organic polluants 4-NP, MB, OG, MO, and CR in simple and binary systems. XRD results and TEM images confirmed the presence of ZnNPs in the polymer matrix. XRF and TGA analysis showed that the percentage of the cross-linking agent significantly influences the content of ZnNPs as well as the thermal stability of the resulting material. The catalytic activity of the composite beads showed that the Cu(4 %)-ALG(ZnNPs) sample was the best catalyst for all pollutants. In the simple system, the recorded rate constants for MB, MO, 4-NP, OG, and CR were 0.0133 s-1, 0.0076 s-1, 0.005 s-1, 0.0042 s-1, 0.0036 s-1, respectively. The catalyst was more selective towards the cationic MB dye for binary systems. For antibacterial and antifungal applications, the different materials containing ZnNPs and their counterparts containing Zn2+ were found to be active across all bacterial strains (Gram positive and Gram negative) as well as fungi, and the Zn2+-containing composites in particular performed better across all bacteria and fungi.
Collapse
Affiliation(s)
- Fadila Benali
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
| | - Bouhadjar Boukoussa
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria; Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Ismail Issam
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Adel Mokhtar
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria; Département Génie des Procédés, Institut des Sciences et Technologies, Université Ahmed Zabana, 48000 Relizane, Algeria.
| | - Mohammed Hachemaoui
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Fatima Habeche
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
| | - Salih Hacini
- Laboratoire de Chimie Fine LCF, Université Oran1 Ahmed Ben Bella, BP-1524, El-Mnaouer, 31000 Oran, Algeria
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
12
|
Giray G, Gonca S, Özdemir S, Isik Z, Yılmaz E, Soylak M, Dizge N. Novel extracellular synthesized silver nanoparticles using thermophilic Anoxybacillus flavithermus and Geobacillus stearothermophilus and their evaluation as nanodrugs. Prep Biochem Biotechnol 2023; 54:294-306. [PMID: 37452678 DOI: 10.1080/10826068.2023.2230496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In this investigation, two new thermophilic bacteria were isolated. The new isolates were characterized by 16S rRNA, biochemical, morphological, and physiological analyzes and the isolates were identified as Geobacillus stearothermophilus strain Gecek20 and thermophilic Anoxybacillus flavithermus strain Gecek19. Various biological activities of extracellular Ag-NPs synthesized from thermophilic G. stearothermophilus strain Gecek20 and thermophilic A. flavithermus strain Gecek19 were evaluated. The produced NPs were analyzed by SEM, SEM-EDX, and XRD analyses. The antioxidant abilities of new synthesized Ag-NPs from thermophilic G. stearothermophilus strain Gecek20 (T1-Ag-NPs) and new synthesized Ag-NPs from thermophilic A. flavithermus strain Gecek19 (T2-Ag-NPs) were studied by DPPH inhibition and metal chelating ability. The highest DPPH and metal chelating abilities of T1-Ag-NPs and T2-Ag-NPs at 200 mg/L concentration were 93.17 and 90.85%, and 75.80 and 83.64%, respectively. The extracellular green synthesized T1-Ag-NPs and T2-AgN-Ps showed DNA nuclease activity at all tested concentrations. Moreover, both new synthesized Ag-NPs had antimicrobial activity against the strains studied, especially on Gram positive bacteria. T1-Ag-NPs and T2-AgNPs also showed powerful Escherichia coli growth inhibition. The highest biofilm inhibition percentages of T1-Ag-NPs and T2-Ag-NPs against Pseudomonas aeruginosa and Staphylococcus aureus were 100.0%, respectively, at 500 mg/L.
Collapse
Affiliation(s)
- Gülay Giray
- Department of Veterinary Medicine, Ihsangazi Technical Science Vocational School, Ihsangazi, Kastamonu, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | - Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| | - Erkan Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
- Nanotechnology Application and Research Center, ERNAM Erciyes University, Kayseri, Turkey
- Technology Research&Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research&Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
13
|
Yang Y, Zhang N, You Q, Chen X, Zhang Y, Zhu L. Novel insights into the multistep chlorination of silver nanoparticles in aquatic environments. WATER RESEARCH 2023; 240:120111. [PMID: 37263118 DOI: 10.1016/j.watres.2023.120111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
Due to the increasing applications, silver nanoparticles (AgNPs) are inevitably released into the environments and are subjected to various transformations. Chloride ion (Cl-) is a common and abundant anion with a wide range of concentration in aquatic environments and exhibits a strong affinity for silver. The results indicate that AgNPs experienced multistep chlorination, which was dependent on the concentration of Cl- in a non-linear manner. The dissolution of AgNPs was accelerated at Cl/Ag ratio of 1 and the intensive etching effect of Cl- contributed to the significant morphology changes of AgNPs. The dissolved Ag+ quickly precipitated with Cl- to form an amorphous and passivating AgCl(s) layer on the surface of AgNPs, thus the dissolution rate of AgNPs decreased at higher Cl/Ag ratios (100 and 1000). As the Cl/Ag ratio further increased to 10,000, the overall transformation rate increased remarkably due to the complexation of Cl- with AgCl(s) to form soluble AgClx(x-1)- species, which was verified by the reaction of AgCl nanoparticles with Cl-. Besides, several environmental factors (electrolytes, surfactants and natural organic matter) affected AgNPs dissolution and the following chlorination. These results will expand the understanding of the environmental fate and potential risks of AgNPs in natural chloride-rich waters.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Nan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi You
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Habeche F, Boukoussa B, Issam I, Mokhtar A, Lu X, Iqbal J, Hacini S, Hachemaoui M, Bengueddach A, Hamacha R. Catalytic reduction of organic pollutants, antibacterial and antifungal activities of AgNPs@CuO nanoparticles-loaded mesoporous silica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30855-30873. [PMID: 36441305 DOI: 10.1007/s11356-022-24317-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In this work, the mesoporous silica MCM-41 was prepared by a hydrothermal method and then modified using silver and copper. The obtained samples were used as antibacterial/antifungal agents and as catalysts for the reduction of the following dyes: Methylene Blue (MB), Congo Red (CR), Methyl Orange (MO), and Orange G (OG). Several parameters affecting the reduction of dyes were investigated and discussed such as the catalyst nature, the initial concentration of the dye, the dye nature, the selectivity of the catalyst in a binary system as well as the catalyst reuse. The catalysts were characterized using XRD, nitrogen sorption measurements, XRF, FTIR, XPS, SEM/EDS, and TEM. XRD, XPS, and TEM analysis clearly showed that the calcination of copper- and silver-modified silica leads to the formation of well-dispersed CuO and AgNPs having sizes between 5 and 10 nm. As determined by XRF analysis, the content of silver nanoparticles was higher compared to CuO in all samples. It has been shown that the dye reduction is influenced by the size and the content of nanoparticles as well as by their dispersions. The catalytic activity was shown to be the highest for the Ag-Cu-MCM(0.05) catalyst with a rate constant of 0.114, 0.102, 0.093, and 0.056 s-1 for MO, MB, CR, and OG dyes in the single-dye system, respectively. In the binary system containing MB/OG or MB/MO, the catalyst Ag-Cu-MCM(0.05) was more selective toward the MB dye. The reuse of the catalyst for three consecutive cycles showed higher MB conversion in a single system with an increase in reaction time. For antifungal and antibacterial properties, the application of calcined and uncalcined materials toward six different strains showed good results, but uncalcined materials showed the best results due to the synergistic effect between CuO and unreduced species Ag+ which are considered responsible for the antibacterial and antifungal action.
Collapse
Affiliation(s)
- Fatima Habeche
- Département de Génie Des Matériaux, Faculté de Chimie, Université Des Sciences Et de La Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000, Oran, Algeria
| | - Bouhadjar Boukoussa
- Département de Génie Des Matériaux, Faculté de Chimie, Université Des Sciences Et de La Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000, Oran, Algeria.
- Laboratoire de Chimie Des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524 El-Mnaouer, 31000, Oran, Algeria.
| | - Ismail Issam
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Adel Mokhtar
- Laboratoire de Chimie Des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524 El-Mnaouer, 31000, Oran, Algeria
- Département Génie Des Procédés, Institut Des Sciences Et Technologies, Université Ahmed Zabana, 48000, Relizane, Algeria
| | - Xinnan Lu
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Salih Hacini
- Laboratoire de Chimie Fine LCF, Université Oran1 Ahmed Ben Bella, BP‑1524, El‑Mnaouer, 31000, Oran, Algeria
| | - Mohammed Hachemaoui
- Laboratoire de Chimie Des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524 El-Mnaouer, 31000, Oran, Algeria
- Département de Sciences de La Matière, Institut Des Sciences Et Technologies, Université Ahmed Zabana, 48000, Relizane, Algeria
| | - Abdelkader Bengueddach
- Laboratoire de Chimie Des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524 El-Mnaouer, 31000, Oran, Algeria
| | - Rachida Hamacha
- Laboratoire de Chimie Des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524 El-Mnaouer, 31000, Oran, Algeria
| |
Collapse
|
15
|
Ajel MK, Al-Nayili A. Synthesis, characterization of Ag-WO 3/bentonite nanocomposites and their application in photocatalytic degradation of humic acid in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20775-20789. [PMID: 36258116 DOI: 10.1007/s11356-022-23614-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
In this study, Ag-WO3/bentonite nanocomposites were synthesized through a sol-gel process, a microwave irradiation technique, and a sol-immobilization process to examine their impact on the photocatalytic activity in the degradation of humic acids. The optical and structural properties of the synthesized materials were characterized using X-ray diffraction (XRD), Fourier-transform-infrared spectra (FTIR), field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray (EDX), UV-Vis diffused reflectance spectra (UV-Vis DRS), Brunauer-Emmett-Teller (BET) method, and transmission electron microscope (TEM). The presence of Ag and WO3 peaks in the XRD and EDX spectra confirmed the synthesis of Ag-WO3 nanoparticles in the composite. The monoclinic structure of the produced WO3 samples are shown by powder X-ray diffraction patterns. The WO3-based nanocomposites' photocatalytic activity was improved by the composition of Ag and bentonite, which reduced the optical bandgap energy of WO3. The binary (Ag-WO3) nanocomposite showed improved photocatalytic activity towards the degradation of humic acid (HA) from 58% (pristine WO3) to 82% (Ag-WO3) when compared with the pristine WO3 sample under the visible light irradiation. Notably, the ternary (Ag-WO3/bent) nanocomposite demonstrated an outstanding photocatalytic efficiency of HA degradation (91.0%) under normal conditions (pH = 7.0 and 25 °C). Humic acid degradation in Ag-WO3/bent was expressed by the pseudo-first-order kinetic. To summarize, integrating Ag, WO3, bentonite, and visible light radiation to activate HA efficiently can be offered as a successful and promising technique for wastewater treatment.
Collapse
Affiliation(s)
- Mohammed K Ajel
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Abbas Al-Nayili
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq.
| |
Collapse
|
16
|
Xia F, Tao X, Wang H, Shui J, Min C, Xia Y, Li J, Tang M, Liu Z, Hu Y, Luo H, Zou M. Biosynthesis of Silver Nanoparticles Using the Biofilm Supernatant of Pseudomonas aeruginosa PA75 and Evaluation of Their Antibacterial, Antibiofilm, and Antitumor Activities. Int J Nanomedicine 2023; 18:2485-2502. [PMID: 37192897 PMCID: PMC10183176 DOI: 10.2147/ijn.s410314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Purpose As an under-explored biomaterial, bacterial biofilms have a wide range of applications in the green synthesis of nanomaterials. The biofilm supernatant of Pseudomonas aeruginosa PA75 was used to synthesize novel silver nanoparticles (AgNPs). BF75-AgNPs were found to possess several biological properties. Methods In this study, we biosynthesized BF75-AgNPs using biofilm supernatant as the reducing agent, stabilizer, and dispersant and investigated their biopotential in terms of antibacterial, antibiofilm, and antitumor activities. Results The synthesized BF75-AgNPs demonstrated a typical face-centered cubic crystal structure; they were well dispersed; and they were spherical with a size of 13.899 ± 4.036 nm. The average zeta potential of the BF75-AgNPs was -31.0 ± 8.1 mV. The BF75-AgNPs exhibited strong antibacterial activities against the methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase Escherichia coli (ESBL-EC), extensively drug-resistant Klebsiella pneumoniae (XDR-KP), and carbapenem-resistant Pseudomonas aeruginosa (CR-PA). Moreover, the BF75-AgNPs had a strong bactericidal effect on XDR-KP at 1/2 × MIC, and the expression level of reactive oxygen species (ROS) in bacteria was significantly increased. A synergistic effect was observed when the BF75-AgNPs and colistin were used for the co-treatment of two colistin-resistant XDR-KP strains, with fractional inhibitory concentration index (FICI) values of 0.281 and 0.187, respectively. Furthermore, the BF75-AgNPs demonstrated a strong biofilm inhibition activity and mature biofilm bactericidal activity against XDR-KP. The BF75-AgNPs also exhibited a strong antitumor activity against melanoma cells and low cytotoxicity against normal epidermal cells. In addition, the BF75-AgNPs increased the proportion of apoptotic cells in two melanoma cell lines, and the proportion of late apoptotic cells increased with BF75-AgNP concentration. Conclusion This study suggests that BF75-AgNPs synthesized from biofilm supernatant have broad prospects for antibacterial, antibiofilm, and antitumor applications.
Collapse
Affiliation(s)
- Fengjun Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Xiaoyan Tao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Haichen Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Jian Shui
- Department of Clinical Laboratory, Changsha Central Hospital, Changsha, 410008, People’s Republic of China
| | - Changhang Min
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Yubing Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Jun Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Mengli Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - ZhaoJun Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Yongmei Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Huidan Luo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Mingxiang Zou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Correspondence: Mingxiang Zou, National Clinical Research Center for Geriatric Disorders, Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People’s Republic of China, Tel/Fax +86-7384327440, Email
| |
Collapse
|
17
|
Wang Y, Lu H, Wang X, Han L, Liu X, Cheng D, Yang F, Guo F, Wang W. Green tubular micro/nano architecture constructed by in-situ planting of small AgNPs on Kapok fiber for oil spill recovery, smart oil-water separation and multifunctional applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Pervaiz S, Bibi I, Hussain Shah SW, Wahab ZU, Ilyas H, Khan A, Khan M, Zada A. Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Abstract
The present study details the green synthesis of silver nanoparticles using clove oil as a reducing and stabilizing agent. Cationic, anionic, nonionic and zwitterionic surfactants were introduced to study the change in size, shape, and morphology of nanoparticles. The nanoparticles were characterized using different techniques. The nanoparticles had shown specific surface Plasmon resonance band with absorbance between 380 and 385 nm. The X-ray diffraction study revealed that the nanoparticles are composed of spherical cubic crystals with average size between 136 and 180 nm while Dynamic Laser scattering (DLS) studies revealed an effective diameter of 82 nm and polydispersity index of 0.005. Thermogravimetric analysis suggested that the particles are stable even at 600 °C. All the samples presented good antibacterial and antifungal efficacies against Staphylococcus aureus, Klebsiella pneumonia and Candida albicans and good catalytic activities for the degradation of fast green and Allura red dyes. Further, thin edible films of the nanoparticles were prepared using sodium alginate for food preservation. The films were coated on fruits and vegetables for extending their shelf life to cope with demand and supply gap.
Collapse
Affiliation(s)
- Seemab Pervaiz
- Department of Conservation Studies , Hazara University , Mansehra , Pakistan
- Department of Chemistry , Hazara University , Mansehra , Pakistan
- Department of Chemistry , Quaid e Azam University , Islamabad , Pakistan
| | - Iram Bibi
- Department of Chemistry , Hazara University , Mansehra , Pakistan
| | | | - Zain Ul Wahab
- Department of Conservation Studies , Hazara University , Mansehra , Pakistan
| | - Hafsa Ilyas
- Department of Chemistry , Quaid e Azam University , Islamabad , Pakistan
| | - Ahmad Khan
- Department of Oral and Maxillofacial Surgery Bacha Khan Medical College Mardan , Khyber Pakhtunkhwa , 23200 Pakistan
| | - Muhammad Khan
- School of Materials Science and Engineering , Northwestern Polytechnical University , Xian , 710072 , P. R. China
| | - Amir Zada
- Department of Chemistry , Abdul Wali Khan University Mardan , Khyber Pakhtunkhwa , 23200 Pakistan
| |
Collapse
|
19
|
Wei S, Hao M, Tang Z, Zhou T, Zhao F, Wang Y. Non-medicinal parts of safflower (bud and stem) mediated sustainable green synthesis of silver nanoparticles under ultrasonication: optimization, characterization, antioxidant, antibacterial and anticancer potential. RSC Adv 2022; 12:36115-36125. [PMID: 36545083 PMCID: PMC9756757 DOI: 10.1039/d2ra06414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The flower of safflower is widely used in Chinese herbal preparations and the non-medicinal parts have been applied to develop a sustainable green method, where AgNPs were generated using a mixture of leaf and stem after 12 h of incubation in the dark. In this study, we intend to improve the efficiency of the reduction reaction and optimize this green method by selecting other non-medicinal parts, such as the bud and the pure stem, evaluating the biosynthesis parameters and harnessing the assistance of ultrasonication. Visual observation and UV-vis spectroscopy confirmed that both safflower stem (SS) and bud (SB) mediated AgNPs (SS-AgNPs and SB-AgNPs, respectively) could be produced rapidly over time under ultrasonication. An alkaline solution could accelerate the formation of SS-AgNPs and SB-AgNPs with greater surface loads. SS-AgNPs and SB-AgNPs of small size could be obtained at pH 8.0 and 10.0, respectively. Large concentrations of SS and SB extract are also beneficial for forming AgNPs of small size. It is in acid and neutral solutions that monodispersed SS-AgNPs and SB-AgNPs can be generated. Characterization of selectively synthesized SS-AgNPs and SB-AgNPs demonstrated their spherical shape with the actual size below 30 nm covered by anions. Both SS-AgNPs and SB-AgNPs exhibited potent antioxidant and antibacterial activity. The MIC values of SS-AgNPs for S. aureus and E. coli were 12.5 and 25.0 μg mL-1, respectively, slightly superior to SB-AgNPs. In an in vitro anticancer assay, both kinds of AgNPs show potent toxicity action against the SW620 cell line with IC50 values of 5.4 and 10.6 μg mL-1, respectively. However, only SS-AgNPs reveal an inhibitory action against the HeLa cell line, where the IC50 is found to be 26.8 μg mL-1. These results provide experimental proof that the assistance of ultrasonication and adjusting the process parameters are efficient methods for promoting the reduction reaction, and both SS and SB mediated AgNPs could serve as a promising antioxidant, antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Simin Wei
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Mengke Hao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Zhishu Tang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Tuan Zhou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Fei Zhao
- College of Basic Medical Sciences, Shaanxi University of Chinese MedicineXianyang 712046China
| | - Yinghui Wang
- College of Science, Chang'an UniversityXi'an 710064China
| |
Collapse
|
20
|
Benali F, Boukoussa B, Benkhedouda NEH, Cheddad A, Issam I, Iqbal J, Hachemaoui M, Abboud M, Mokhtar A. Catalytic Reduction of Dyes and Antibacterial Activity of AgNPs@Zn@Alginate Composite Aerogel Beads. Polymers (Basel) 2022; 14:polym14224829. [PMID: 36432956 PMCID: PMC9698220 DOI: 10.3390/polym14224829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
This work focuses on the preparation of aerogel composite beads based on Zn(II)-crosslinked alginate and loaded with different percentages of AgNPs using a simple approach. The obtained samples were evaluated in two different applications: the first application consists in their use as catalysts for the reduction of MB, MO, OG and CR dyes in a simple and binary system under the presence of NaBH4. For this, several parameters affecting the catalytic behavior of these catalysts have been investigated and discussed such as the catalyst mass, AgNPs content, dye nature, and the selectivity of the catalyst in a binary system. The second application concerns their antibacterial activities towards two Gram-negative bacteria Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 27853), and a Gram-positive bacteria Staphylococcus aureus (ATCC 25923). The physico-chemical properties of different samples were characterized by XRD, FTIR, SEM/EDS, and TGA analysis. The obtained results confirmed the presence of AgNPs on a highly porous alginate structure. The dispersion of a high percentage of AgNPs leads to the formation of nanoparticles on the outer surface of the alginate which led to their leaching after the catalytic test, while the composite having a low percentage of AgNPs showed good results through all dyes without leaching of AgNPs. For the antibacterial application of the different samples, it was shown that a composite with a higher percentage of AgNPs was the most effective against all bacteria.
Collapse
Affiliation(s)
- Fadila Benali
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, Oran 31000, Algeria
| | - Bouhadjar Boukoussa
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, Oran 31000, Algeria
- Laboratoire de Chimie des Matériaux LCM, Université Oran 1 Ahmed Ben Bella, BP 1524, El-Mnaouer, Oran 31000, Algeria
- Correspondence: (B.B.); (J.I.); (M.A.)
| | - Nour-El-Houda Benkhedouda
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, Oran 31000, Algeria
| | - Amina Cheddad
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, Oran 31000, Algeria
| | - Ismail Issam
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
- Correspondence: (B.B.); (J.I.); (M.A.)
| | - Mohammed Hachemaoui
- Laboratoire de Chimie des Matériaux LCM, Université Oran 1 Ahmed Ben Bella, BP 1524, El-Mnaouer, Oran 31000, Algeria
- Département de Sciences de la Matière, Institut des Sciences et Technologies, Université Ahmed Zabana, Relizane 48000, Algeria
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Correspondence: (B.B.); (J.I.); (M.A.)
| | - Adel Mokhtar
- Laboratoire de Chimie des Matériaux LCM, Université Oran 1 Ahmed Ben Bella, BP 1524, El-Mnaouer, Oran 31000, Algeria
- Département Génie des Procédés, Institut des Sciences et Technologies, Université Ahmed Zabana, Relizane 48000, Algeria
| |
Collapse
|