1
|
Liang L, Bai C, Zhang Y, Komarneni S, Ma J. Weak magnetic field and coexisting ions accelerate phenol removal by ZVI/H 2O 2 system: Their efficiency and mechanism. CHEMOSPHERE 2024; 359:142260. [PMID: 38735488 DOI: 10.1016/j.chemosphere.2024.142260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Human activity and industrial production have led to phenol becoming a significant risk factor. The proper treatment of phenol in wastewater is essential. In this study, the utilization of weak magnetic field (WMF) and zero-valent iron (ZVI) was proposed to activate H2O2 to degrade phenol contaminant. The results show that the weak magnetic field has greatly enhanced the reaction rate of ZVI/H2O2 removal of phenol. The removal rates of phenol by ZVI/H2O2/WMF generally decreased with increasing initial pH and phenol concentrations, and firstly increase and then decrease with increasing Fe0 or H2O2 dosage. When the initial pH is 5.0, ZVI concentration of 0.2 g L-1, H2O2 concentration of 6 mM, and phenol concentration of 100 mg L-1 were used, complete removal of phenol can be achieved within 180 min at 25 °C. The degradation process was consistent with the pseudo-first-order kinetic model when the experimental data was fitted. The ZVI/H2O2/WMF process exhibited a 1.05-2.66-fold enhancement in the removal rate of phenol under various conditions, surpassing its counterpart lacking WMF. It was noticed that the presence of 1-5 mM of Ca2+, Mg2+, Cl-, SO42- ions can significantly enhance the kinetics of phenol removal by ZVI/H2O2 system with or without WMF to 2.22-10.40-fold, but NO3-, CO32-, PO43- inhibited the reaction significantly in the following order: PO43- > CO32- > NO3-. Moreover, pre-magnetization for 3 min could enhance the ZVI/H2O2 process which was valuable in treatment of real wastewater. The hydroxyl radical has been identified as the primary radical species responsible for phenol degradation. The presence of WMF accelerates the corrosion rate of ZVI, thereby promoting the release of Fe2+ ions, which in turn induces an increased production of hydroxyl radicals and facilitates phenol degradation. The compounds hydroquinone, benzoquinone, catechol, maleic acid, and CO2 were identified using GC-MS, and degradation pathways were proposed. Employing WMF in combination with various ions like Ca2+, Mg2+, Cl-, SO42- is a novel method, which can enhance oxidation capacity of ZVI/H2O2 and may lead to economic benefit.
Collapse
Affiliation(s)
- Liping Liang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, China
| | - Chaoqi Bai
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, China
| | - Yuting Zhang
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jianfeng Ma
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
2
|
Yu K, Tu Y, Wan M, Guo Y, Liu S, Li H, Fan Y, Zhao G, Zhong S, Liu C, Luo X. Integrated influence of sulfide modification on the reactivity of nanoscale zero-valent iron towards decabromodiphenyl ether under an electromagnetic field. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134428. [PMID: 38691928 DOI: 10.1016/j.jhazmat.2024.134428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Individual application of sulfide modification and electromagnetic field (EMF) can enhance the reactivity of nanoscale zero-valent iron (nZVI), yet the potential of both in combination is not clear. This work found that the reactivity of nZVI towards decabromodiphenyl ether was significantly enhanced by the combined effect of sulfidation and EMF. The specific reaction rate constant of nZVI increased by 7 to 10 times. A series of characterization results revealed that the sulfidation level not only affects the inherent reactivity but also the magnetic-induced heating (MIH) and corrosion (MIC) of nZVI. These collectively influence the degradation efficiency of nZVI under EMF. Sulfidation generally diminished the MIH effect. The low degree of sulfidation (S/Fe = 0.1) slightly reduced the MIC effect by 21.4%. However, the high degree of sulfidation (S/Fe = 0.4) led to significantly enhanced MIC effect by 107.1%. For S/Fe = 0.1 and 0.4, the overall enhancement in the reactivity resulting from EMF was alternately dominated by the contributions of MIH and MIC. This work provides valuable insights into the MIH and MIC effects about the sulfidation level of nZVI, which is needed for further exploration and optimization of this combined technology.
Collapse
Affiliation(s)
- Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yuxuan Tu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Mao Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yongliang Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shiqi Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huimin Li
- Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330006, PR China
| | - Yanchun Fan
- Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330006, PR China
| | - Gang Zhao
- Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330006, PR China
| | - Songxiong Zhong
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
3
|
Xu Y, Chen J. Activity and recyclability enhancement of pH-dependent Fe 0@BC-mediated heterogeneous sodium percarbonate (SPC)-reducing agents (RA) system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120596. [PMID: 38520858 DOI: 10.1016/j.jenvman.2024.120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Dyes pose great threats to the aquatic environment and human health. Fe0-based Fenton-like systems have been widely employed for the degradation of organic dyes. However, the regulation of degradability and recyclability was still unclear. In this study, Rhodamine B (RhB) was served as the model pollutant, hydroxylamine hydrochloride was selected as the RA, the natural photocatalysis system demonstrated stable operation. RA, as performance enhancement agent, was firstly reported in micro/nano-Zero-Valent Iron@Biochar (m/nZVI@BC) based SPC-RA system. Carrier size-fractionated m/nZVI@BC was fabricated by one-step carbothermal method. As a result, RA synergistically interacted with SPC, and the reaction time reduced from 15 min to 4 min. In the 0.010 g m/nZVI@BC-mediated SPC-RA system, over 95% of RhB (100 mg·L-1, 1041.667 mg·g-1) was successfully degraded. The maximum degradation ability could still exceed 1g·g-1 via 5 times repeated applications. Meanwhile, the loss of degradability, caused by halving SPC concentration could be compensated by RA dosage measurement. The entire degradation process was predominantly dominated by free radicals (•OH> 1O2> •O2-> •CO3-). Reactive oxidizing species (ROSs) were primarily excited by α-Fe0, Fe3C and N sites of biochar (BC). Light and BC carrier dedicated slight influence. These discoveries shed a light on the activity and recyclability regulation of catalytic material, aligning with the principles of green chemistry and cleaner production. This study demonstrates a novel approach to efficient management of solid waste disposal, reuse of waste biomass, advanced treatment of dye-containing wastewater, pollution control in aquatic environments.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
4
|
Kong L, Liang X, Zhan Y, Jiao S, Zhen Y, Liu M, Tan J, Yin Y. Efficient adsorption of selenium (Se(IV) and Se(VI)) from water using Acacia senegal polysaccharide with multiple amine groups: Synthesis and application. Int J Biol Macromol 2023; 253:127458. [PMID: 37844816 DOI: 10.1016/j.ijbiomac.2023.127458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In this study, an amine-rich gel (ARAS) was prepared by chemically altering Acacia senegal (AS). ARAS acts as an adsorbent for selenium. Owing to the introduction of amino functional groups and a remarkable specific surface area (91.89 g/m2), ARAS shows maximum adsorption capacities at 75 and 130 mg g-1 for Se(IV) and Se(VI), respectively. The removal efficiency of ARAS is higher (ωSeIV = 98.2 % and ωSeVI = 98.6 %) at lower concentrations (CSeIV = 100 ppm and CSeVI = 95 ppm) and the adsorption equilibrium is achieved within 60 min. The adsorption process of Se (IV) and Se (VI) via ARAS is elucidated using the Quasi-Second-Order kinetic and Langmuir models. The enhanced adsorption capacity of the adsorbent could be attributed to the synergistic effects of electrostatic attraction, hydrogen bonding, and specific physicochemical properties. Thermodynamic studies reveal that the surface adsorption process is spontaneous and exothermic. Notably, ARAS maintains remarkable adsorption stability under a variety of solution conditions, including variable pH (4-11), NaCl concentrations (0-1 M), and the presence of organic solvents. It retains approximately 60 % of its initial adsorption capacity for Se(IV) and Se(VI) after three adsorption cycles. Therefore, ARAS with its cost-effectiveness and exceptional performance shows considerable potential for applications in water treatment.
Collapse
Affiliation(s)
- Lingzhen Kong
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 515000, China
| | - Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 515000, China
| | - Yanjun Zhan
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 515000, China
| | - Shufei Jiao
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 515000, China
| | - Yunying Zhen
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 515000, China
| | - Min Liu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 515000, China
| | - Jisuan Tan
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 515000, China.
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China; College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 515000, China.
| |
Collapse
|
5
|
Dong Z, Meng C, Li Z, Zeng D, Wang Y, Cheng Z, Cao X, Ren Q, Wang Y, Li X, Zhang Z, Liu Y. Novel Co 3O 4@TiO 2@CdS@Au double-shelled nanocage for high-efficient photocatalysis removal of U(VI): Roles of spatial charges separation and photothermal effect. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131248. [PMID: 36963194 DOI: 10.1016/j.jhazmat.2023.131248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Effective spatial separation and utilization of photogenerated charges are critical for photocatalysis process. Herein, novel Co3O4 @TiO2 @CdS@Au double-shelled nanocage (CTCA) with spatially separated redox centers was synthesized by loading Co3O4 and Au NP cocatalysts on the inner and outer surfaces of Z-scheme heterojunction (TiO2 @CdS). The reduction rate constant of U(VI) by CTCA reached 0.218 min-1 under simulated sunlight irradiation, which was 6.6, 3.2 and 36.3 times than that of monolayer CTCA (0.033 min-1), CTC (0.068 min-1) and CT (0.006 min-1). The full-spectrum light-assisted photothermal catalytic performance can enable CTCA to remove 98.8% of U(VI) and degrade nearly 90% of five organic pollutants simultaneously. Detailed characterizations and theory calculations revealed that the photogenerated holes and electrons in CTCA flow inward and outward. More importantly, Co3O4 acts as a "nano heater" to generate the photothermal effect for further enhancing the charge transfer and accelerating the surface reaction kinetics. Meanwhile, the photogenerated electrons and superoxide radicals play a dominant role in reducing the adsorbed U(VI) to insoluble (UO2)O2·2H2O(s). This work provides valuable input toward a novel double-shelled hollow nanocage reactor with excellent photothermal catalysis ability for efficient recovery U(VI) from uranium mine wastewater to address environmental contamination issues.
Collapse
Affiliation(s)
- Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, PR China
| | - Cheng Meng
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Zifan Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Dongling Zeng
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Yingcai Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Zhongping Cheng
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Qiang Ren
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Xiaoyan Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China.
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China.
| |
Collapse
|
6
|
Bouazzi D, Mehri A, Kaaroud K, Touati H, Karouia F, Clacens J, Laghzizil A, Badraoui B. Beneficial effect of in-situ citrate-grafting of hydroxyapatite surface for water treatment. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Panić S, Petronijević M, Vukmirović J, Grba N, Savić S. Green Synthesis of Nanoscale Zero-Valent Iron Aggregates for Catalytic Degradation of Textile Dyes. Catal Letters 2023. [DOI: 10.1007/s10562-022-04257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Now and future: Development and perspectives of using polyphenol nanomaterials in environmental pollution control. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Comparison of the efficiencies of pyrite and zero-valent iron activated peroxydisulfate systems to degrade methomyl in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|