1
|
Sucharitakul P, Wu WM, Zhang Y, Peng BY, Gao J, Wang L, Hou D. Exposure Pathways and Toxicity of Microplastics in Terrestrial Insects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11887-11900. [PMID: 38885123 DOI: 10.1021/acs.est.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.
Collapse
Affiliation(s)
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Bohm K, Taylor W, Gyawali P, Pattis I, Gutiérrez Ginés MJ. Black soldier fly-based bioconversion of biosolids: Microbial community dynamics and fate of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172823. [PMID: 38679091 DOI: 10.1016/j.scitotenv.2024.172823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Biosolids as by-products of wastewater treatment can contain a large spectrum of pathogens and antibiotic resistance genes (ARGs). Insect-based bioconversion using black soldier fly larvae (BSFL) is an emerging technology that has shown to reduce significant amounts of biosolids quickly and produce larvae biomass containing low heavy metal concentrations. However, to the best of our knowledge, this is the first study investigating the transfer of pathogens and ARGs from biosolids into the process' end-products, BSFL and frass. We hypothesized that BSF-based bioconversion can decrease the abundance of pathogenic bacteria and ARGs in biosolids. In this study, we performed BSFL feeding trials with biosolids blended or not blended with wheat bran, and wheat bran alone as a low bioburden diet (control). We conducted 16S rRNA amplicon sequencing to monitor changes of the BSFL-associated microbial community and the fate of biosolids-associated pathogens. A diverse set of ARGs (ermB, intl1, sul1, tetA, tetQ, tetW, and blaCTX-M-32) were quantified by qPCR and were linked to changes in substrate- and BSFL-associated microbiomes. BSF-based bioconversion of biosolids-containing substrates led to a significant reduction of the microbial diversity, the abundance of several pathogenic bacteria and the investigated ARGs (< 99 %). Feeding with a high bioburden biosolid diet resulted in a higher microbial diversity, and the accumulation of pathogenic bacteria and ARGs in the BSFL. Results of this study demonstrated that BSF-based bioconversion can be a suitable waste management technology to (1) reduce significant amounts of biosolids and (2) reduce the presence of pathogens and ARGs. However, the resulting larvae biomass would need to undergo further post-treatment to reduce the pathogenic load to allow them as animal feed.
Collapse
Affiliation(s)
- Kristin Bohm
- Institute of Environmental Science and Research Ltd., Porirua 5022, New Zealand
| | - Will Taylor
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - Pradip Gyawali
- Food Standards Australia New Zealand, Wellington 6011, New Zealand
| | - Isabelle Pattis
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - María J Gutiérrez Ginés
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand; School of Earth and Environment, University of Canterbury, Christchurch 8041, New Zealand.
| |
Collapse
|
3
|
Muhammad A, Zhang N, He J, Shen X, Zhu X, Xiao J, Qian Z, Sun C, Shao Y. Multiomics analysis reveals the molecular basis for increased body weight in silkworms (Bombyx mori) exposed to environmental concentrations of polystyrene micro- and nanoplastics. J Adv Res 2024; 57:43-57. [PMID: 37741508 PMCID: PMC10918344 DOI: 10.1016/j.jare.2023.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/12/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
INTRODUCTION Micro- and nanoplastics (MNPs) are emerging environmental pollutants that have raised serious concerns about their potential impact on ecosystem and organism health. Despite increasing efforts to investigate the impacts of micro- and nanoplastics (MNPs) on biota little is known about their potential impacts on terrestrial organisms, especially insects, at environmental concentrations. OBJECTIVES To address this gap, we used an insect model, silkworm Bombyx mori to examine the potential long-term impacts of different sizes of polystyrene (PS) MNPs at environmentally realistic concentrations (0.25 to 1.0 μg/mL). METHODS After exposure to PS-MNPs over most of the larval lifetime (from second to last instar), the endpoints were examined by an integrated physiological (growth and survival) and multiomics approach (metabolomics, 16S rRNA, and transcriptomics). RESULTS Our results indicated that dietary exposures to PS-MNPs had no lethal effect on survivorship, but interestingly, increased host body weight. Multiomics analysis revealed that PS-MNPs exposure significantly altered multiple pathways, particularly lipid metabolism, leading to enriched energy reserves. Furthermore, the exposure changed the structure and composition of the gut microbiome and increased the abundance of gut bacteria Acinetobacter and Enterococcus. Notably, the predicted functional profiles and metabolite expressions were significantly correlated with bacterial abundance. Importantly, these observed effects were particle size-dependent and were ranked as PS-S (91.92 nm) > PS-M (5.69 µm) > PS-L (9.7 µm). CONCLUSION Overall, PS-MNPs at environmentally realistic concentrations exerted stimulatory effects on energy metabolism that subsequently enhanced body weight in silkworms, suggesting that chronic PS-MNPs exposure might trigger weight gain in animals and humans by influencing host energy and microbiota homeostasis.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xinyue Zhu
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Jian Xiao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Zhaoyi Qian
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
| |
Collapse
|
4
|
Pignataro E, Pini F, Barbanente A, Arnesano F, Palazzo A, Marsano RM. Flying toward a plastic-free world: Can Drosophila serve as a model organism to develop new strategies of plastic waste management? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169942. [PMID: 38199375 DOI: 10.1016/j.scitotenv.2024.169942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The last century was dominated by the widespread use of plastics, both in terms of invention and increased usage. The environmental challenge we currently face is not just about reducing plastic usage but finding new ways to manage plastic waste. Recycling is growing but remains a small part of the solution. There is increasing focus on studying organisms and processes that can break down plastics, offering a modern approach to addressing the environmental crisis. Here, we provide an overview of the organisms associated with plastics biodegradation, and we explore the potential of harnessing and integrating their genetic and biochemical features into a single organism, such as Drosophila melanogaster. The remarkable genetic engineering and microbiota manipulation tools available for this organism suggest that multiple features could be amalgamated and modeled in the fruit fly. We outline feasible genetic engineering and gut microbiome engraftment strategies to develop a new class of plastic-degrading organisms and discuss of both the potential benefits and the limitations of developing such engineered Drosophila melanogaster strains.
Collapse
Affiliation(s)
- Eugenia Pignataro
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Francesco Pini
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Alessandra Barbanente
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Antonio Palazzo
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - René Massimiliano Marsano
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
5
|
Zou Y, Chen Y, Wang D, Xie X, Li G, Zheng C, Wen J, Su H, Liu X, Zeng L, Lu Y, Cao F. The Effects of Nine Compounds on Aldehyde-Oxidase-Related Genes in Bactrocera dorsalis (Hendel). Genes (Basel) 2023; 15:35. [PMID: 38254925 PMCID: PMC10815873 DOI: 10.3390/genes15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) (B. dorsalis) is an important agricultural, major invasive, and quarantine pest that can cause significant damage to the economic value of the fruit and vegetable industry. Male bait is one of the most effective methods of surveying, monitoring, and controlling B. dorsalis. In our study, we constructed cDNA libraries using total RNA extracted independently from the antennae, mouthparts, and thoracic legs of male and female adults and the ovipositors of female adults and screened out four aldehyde-oxidase-related genes (AOX-related), C58800, C66700, C67485, and C67698. Molecular docking predictions showed that eight compounds, including 3,4-dimethoxycinnamyl alcohol, 3,4-dimethoxy-cinnamaldehyde, deet, ethyl N-acetyl-N-butyl-β-alaninate, n-butyl butyrate, n-butyl butyrate, ethyl butyrate, methyl eugenol, and ethyl acetate, could combine with proteins encoded by the four B. dorsalis AOX-related genes. Furthermore, QPCR was performed to confirm that four compounds, including 3,4-dimethoxy cinnamic aldehyde, butyl levulinic acid ethyl ester (mosquito repellent), butyl butyrate, and methyl eugenol, induced significant changes in the AOX-related genes of B. dorsalis. These results provide useful information and guidance for the batch screening of potentially useful compounds and the search for effective attractants of B. dorsalis.
Collapse
Affiliation(s)
- Yan Zou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (Y.Z.); (X.X.); (J.W.); (X.L.)
| | - Yupeng Chen
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (G.L.); (C.Z.); (H.S.); (L.Z.); (Y.L.)
| | - Duoduo Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China;
| | - Xiaowei Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (Y.Z.); (X.X.); (J.W.); (X.L.)
| | - Gen Li
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (G.L.); (C.Z.); (H.S.); (L.Z.); (Y.L.)
| | - Chunyan Zheng
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (G.L.); (C.Z.); (H.S.); (L.Z.); (Y.L.)
| | - Jian Wen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (Y.Z.); (X.X.); (J.W.); (X.L.)
| | - Hongai Su
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (G.L.); (C.Z.); (H.S.); (L.Z.); (Y.L.)
| | - Xin Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (Y.Z.); (X.X.); (J.W.); (X.L.)
| | - Ling Zeng
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (G.L.); (C.Z.); (H.S.); (L.Z.); (Y.L.)
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (G.L.); (C.Z.); (H.S.); (L.Z.); (Y.L.)
| | - Fengqin Cao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (Y.Z.); (X.X.); (J.W.); (X.L.)
| |
Collapse
|
6
|
Siddiqui R, Khan NA. Is the gut microbiome of insects a potential source to meet UN sustainable development goals to eliminate plastic pollution? ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:455-458. [PMID: 37688332 PMCID: PMC10667635 DOI: 10.1111/1758-2229.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/05/2023] [Indexed: 09/10/2023]
Abstract
As insects such as cockroaches can endure high radiation, flourish in unsanitary circumstances, thrive on germ-infested feed, and can even digest the organic polymer cellulose, the gut microbiota of these species likely produces enzymes contributing to their ability to digest a variety of materials. The use of cockroaches as a bio-resource to eliminate plastic is discussed. We explore whether species such as cockroaches are a potential bio-resource to eliminate plastic pollution and contribute to the sustainable development goals adopted by the United Nations as well as the global community to reduce and/or eliminate plastic pollution.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and SciencesAmerican University of SharjahSharjahUnited Arab Emirates
- Department of Medical Biology, Faculty of MedicineIstinye UniversityIstanbulTurkey
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of MedicineIstinye UniversityIstanbulTurkey
- Department of Clinical Sciences, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| |
Collapse
|
7
|
Rizzarelli P, Leanza M, Rapisarda M. Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 38014928 DOI: 10.1002/mas.21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Melania Leanza
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Marco Rapisarda
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| |
Collapse
|
8
|
Affiliation(s)
- K DiGiacomo
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
He L, Yang SS, Ding J, He ZL, Pang JW, Xing DF, Zhao L, Zheng HS, Ren NQ, Wu WM. Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor Larvae. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131759. [PMID: 37276692 DOI: 10.1016/j.jhazmat.2023.131759] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Polyethylene terephthalate (PET) is a mass-produced fossil-based plastic polymer that contributes to catastrophic levels of plastic pollution. Here we demonstrated that Tenebrio molitor (mealworms) was capable of rapidly biodegrading two commercial PET resins (microplastics) with respective weight-average molecular weight (Mw) of 39.33 and 29.43 kDa and crystallinity of 22.8 ± 3.06% and 18 ± 2.25%, resulting in an average mass reduction of 71.03% and 73.28% after passage of their digestive tract, and respective decrease by 9.22% and 11.36% in Mw of residual PET polymer in egested frass. Sequencing of 16 S rRNA gene amplicons of gut microbial communities showed that dominant bacterial genera were enriched and associated with PET degradation. Also, PICRUSt prediction exhibited that oxidases (monooxygenases and dioxygenases), hydrolases (cutinase, carboxylesterase and chitinase), and PET metabolic enzymes, and chemotaxis related functions were up-regulated in the PET-fed larvae. Additionally, metabolite analyses revealed that PET uptake caused alterations of stress response and plastic degradation related pathways, and lipid metabolism pathways in the T. molitor larvae could be reprogrammed when the larvae fed on PET. This study provides new insights into gut microbial community adaptation to PET diet under nutritional stress (especially nitrogen deficiency) and its contribution to PET degradation.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Li He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing 100096, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - He-Shan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Shah R, Nguyen TV, Marcora A, Ruffell A, Hulthen A, Pham K, Wijffels G, Paull C, Beale DJ. Exposure to polylactic acid induces oxidative stress and reduces the ceramide levels in larvae of greater wax moth (Galleria mellonella). ENVIRONMENTAL RESEARCH 2023; 220:115137. [PMID: 36563977 DOI: 10.1016/j.envres.2022.115137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plastic biodegradation by insects has made significant progress, opening up new avenues for the treatment of plastic waste. Wax moth larvae, for example, have attracted the attention of the scientific community because they are known to chew, ingest, and biodegrade natural polymer bee waxes. Despite this, we know very little about how these insects perform on manufactured plastics or how manufactured plastics affect insect metabolism. As a result, we studied the metabolism of greater wax moths (Galleria mellonella) fed on molasses-supplemented polylactic acid plastic (PLA) blocks. An analysis of the central carbon metabolism (CCM) metabolites was performed using liquid chromatography triple quadrupole mass spectrometry (LC-QQQ-MS), while an analysis of untargeted metabolites and lipids was conducted using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS). In total, 169 targeted CCM metabolites, 222 untargeted polar metabolites, and 196 untargeted nonpolar lipids were identified within the insect samples. In contrast, compared to control larvae, PLA-fed larvae displayed significantly different levels of 97 CCM metabolites, 75 polar metabolites, and 57 lipids. Purine and pyrimidine metabolisms were affected by PLA feeding, as well as amino acid metabolism, carbohydrates, cofactors, vitamins, and related metabolisms. Additionally, PLA exposure disrupted insect energy metabolism and oxidative stress, among other metabolic disturbances. The larvae fed PLA have lower levels of several lipids, suggesting a reduction in lipid reserves, and ceramide levels are likely to have changed due to apoptosis and inflammation. The study indicates that G. mellonella larvae could ingest PLA but this process causes some metabolic stress for the host. Future studies of the molecular pathways of this biodegradation process might help to provide strategies for stress reduction that would speed up insect digestion of plastic.
Collapse
Affiliation(s)
- Rohan Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Thao V Nguyen
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Anna Marcora
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Angela Ruffell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Andrew Hulthen
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Khoa Pham
- CSIRO Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton VIC 4067, Australia
| | - Gene Wijffels
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Cate Paull
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia.
| |
Collapse
|
11
|
Pazmiño MF, Del Hierro AG, Flores FJ. Genetic diversity and organic waste degrading capacity of Hermetia illucens from the evergreen forest of the Equatorial Choco lowland. PeerJ 2023; 11:e14798. [PMID: 36755868 PMCID: PMC9901308 DOI: 10.7717/peerj.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Globally, microplastics (MP) represent a growing burden for ecosystems due to their increasing presence at different trophic levels. In Ecuador, the lack of waste segregation has increased the quantity of waste, primarily organics and plastics, overloading landfills and water sources. Over time, plastics reduce in size and silently enter the food chain of animals, such as insects. The black soldier fly (BSF) larvae, Hermetia illucens (Linnaeus, 1758), is a species with devouring behavior used for waste management because of its beneficial qualities such as fly pest control, biomass production, and rapid organic waste degradation. Studies have uncovered the insect's ability to tolerate MP, and consider the possibility that they may be able to degrade polymers. For the first time in Ecuador, the present study characterized H. illucens using the sequences of different molecular markers. Finally, H. illucens' degrading capacity was evaluated in the presence of MP and decaying food residues, resembling landfill conditions.
Collapse
Affiliation(s)
- María Fernanda Pazmiño
- Departamento de Ciencias de la Vida y de la Agricultura, Facultad de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas-ESPE, Quito, Pichincha, Ecuador,Laboratorio de Investigación Aplicada—Biotecnología, Instituto Nacional de Biodiversidad-INABIO, Quito, Pichincha, Ecuador
| | - Ana G. Del Hierro
- Laboratorio de Investigación Aplicada—Biotecnología, Instituto Nacional de Biodiversidad-INABIO, Quito, Pichincha, Ecuador
| | - Francisco Javier Flores
- Departamento de Ciencias de la Vida y de la Agricultura, Facultad de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas-ESPE, Quito, Pichincha, Ecuador,Centro de Investigación de Alimentos, Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Pichincha, Ecuador
| |
Collapse
|
12
|
Crosstalk between the microbiota and insect postembryonic development. Trends Microbiol 2023; 31:181-196. [PMID: 36167769 DOI: 10.1016/j.tim.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Insect sequential development evolves from a simple molt towards complete metamorphosis. Like any multicellular host, insects interact with a complex microbiota. In this review, factors driving the microbiota dynamics were pointed out along their development. Special focus was put on tissue renewal, shift in insect ecology, and microbial interactions. Conversely, how the microbiota modulates its host development through nutrient acquisition, hormonal control, and cellular or tissue differentiation was exemplified. Such modifications might have long-term carry-over effects on insect physiology. Finally, remarkable microbe-driven control of insect behaviors along their life cycle was highlighted. Increasing knowledge of those interactions might offer new insights on how insects respond to their environment as well as perspectives on pest- or vector-control strategies.
Collapse
|
13
|
De‐Freitas I, Queiroga D, Stefani V. Phenology of the semiaquatic caterpillar
Paracles klagesi
and its response to environmental changes. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Iasmim De‐Freitas
- Programa de Pós‐graduação em Entomologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto – FFCLRP Universidade de São Paulo – USP Ribeirão Preto Brazil
| | - Drielly Queiroga
- Laboratório de Ecologia Comportamental e Interações, Pós‐graduação em Ecologia e Conservação de Recursos Naturais Universidade Federal de Uberlândia Uberlândia Brazil
| | - Vanessa Stefani
- Laboratório de História Natural e Reprodutiva de Artrópodes (LHINRA), Pós‐graduação em Ecologia e Conservação de Recursos Naturais Universidade Federal de Uberlândia Uberlândia 38400‐902 Brazil
| |
Collapse
|