1
|
Soares M, Oliveira H, Alves C. Airborne particulate matter inhalation bioaccessibility: A review of methodological aspects. Chem Biol Interact 2025; 408:111403. [PMID: 39862943 DOI: 10.1016/j.cbi.2025.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increasing attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects. To assess the bioaccessibility of PM-bound pollutants, such as polycyclic aromatic hydrocarbons, phthalate esters, organophosphorus flame retardants and metal(loid)s, simulated lung fluids (SLF) are used as a tool to mimic the conditions in the human respiratory system. In addition to different SLF, various extraction methodologies and experimental conditions (e.g., incubation period, solid to liquid ratio, and pH) have been employed to extract the bioaccessible part of these pollutants, though there is not yet a standardised procedure to do so. This review aims to critically evaluate existing inhalation bioaccessibility methodologies and explore their connection with PM characteristics. More research is needed, and a standardised procedure should be implemented to allow the comparation of data between studies. Better in vitro-in vivo relationships need to be established to enhance the feasibility of in vitro bioaccessibility assays as surrogates in human health exposure assessments. Long-term effects of bioaccessible pollutants and any potential synergetic effects between multiple contaminants should also be explored to assess health repercussions more thoroughly.
Collapse
Affiliation(s)
- Marlene Soares
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Helena Oliveira
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Deng W, Wen M, Xiong J, Wang C, Huang J, Guo Z, Wang W, An T. Atmospheric occurrences and bioavailability health risk of PAHs and their derivatives surrounding a non-ferrous metal smelting plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134200. [PMID: 38593661 DOI: 10.1016/j.jhazmat.2024.134200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Non-ferrous metal smelting emits large amounts of organic compounds into the atmosphere. Herein, 20 parent polycyclic aromatic hydrocarbons (PPAHs), 9 nitrated PAHs (NPAHs), 14 chlorinated PAHs (ClPAHs), and 6 alkylated PAHs (APAHs) in atmospheric samples from a typical non-ferrous metal smelting plant (NMSP) and residential areas were detected. In NMSP, benzo[a]pyrene, dibenz[a,h]anthracene, 6-nitrochrysene, 9-chlorofluorene, and 1-methylfluorene were the predominant compounds in the particulate phase, while phenanthrene constituted 57.3% in the gaseous phase. The concentration of PAHs in residential areas around NMSP was 1.8 times higher than that in the control area. Additionally, there was a significant negative correlation between the concentration and the distance from the NMSP. In terms of health risks, although the skin penetration coefficient of PM2.5 is smaller than that of the gaseous phase, dermal absorption of PM2.5 posed a greater threat to the population, the incremental lifetime cancer risk (ILCR) of NMSP was 1.8 × 10-4. After considering bioavailability, BILCR decreased by 1-2 orders of magnitude in different regions, and dermal absorption decreased more than inhalation intake. Nevertheless, the dermal absorption of PM2.5 in NMSP still presents a probable carcinogenic risk. This study provides a necessary reference for the subsequent control of NMSP contamination.
Collapse
Affiliation(s)
- Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meicheng Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jukun Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhizhao Guo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Shahpoury P, Wnorowski A, Harner T, Saini A, Halappanavar S. A method for measuring the bioaccessibility of polycyclic aromatic hydrocarbons in cell culture media. CHEMOSPHERE 2024; 351:141257. [PMID: 38244871 DOI: 10.1016/j.chemosphere.2024.141257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Airborne polycyclic aromatic hydrocarbons (PAHs) and their derivatives are of particular concern for population health due to their abundance and toxicity via inhalation. Lung toxicity testing includes exposing lung epithelial cell lines to PAHs in a culture medium containing inorganic species, lipids, proteins, and other biochemicals where the cell response is influenced among others by the toxic chemical accessibility in the medium. While inhalation bioaccessibility of PAHs and other toxicants was previously studied in surrogate lung fluids, studies measuring bioaccessibility in cell culture media are rare. In this work, a method was developed to characterize PAH bioaccessibility in a culture medium used for mouse lung epithelial (FE1) cells. Further, the optimised method was tested using commercially available standard reference material of urban particulate matter (PM) as well as polyurethane foam passive air samplers (PUF-PAS). The method provided a high precision and recovery of analytes, indicating no losses during sample processing and analysis. PAHs had non-linear concentration-responses, with the culture medium approaching saturation with PM concentration of 500 μg mL-1. The results showed that phenanthrene, a 3-ring PAH, was significantly more bioaccessible than ≥4-ring congeners in the culture medium (up to ∼2.5 folds; p < 0.05). Finally, using pre-deployed PUF-PAS from a residential and an industrial site, five PAHs were found in the culture medium, including naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene. This work provides a proof of concept to enable future studies to assess the inhalation bioaccessibility of polycyclic aromatic compounds and other airborne pollutants collected using PUF-PAS.
Collapse
Affiliation(s)
- Pourya Shahpoury
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada; Environmental and Life Sciences, Trent University, Peterborough, Canada.
| | - Andrzej Wnorowski
- Analysis and Air Quality Section, Environment and Climate Change Canada, Ottawa, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Amandeep Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada; Department of Biology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
4
|
Uribe DM, Ortega LM, Grassi MT, Dolatto RG, Sánchez NE. Lichens as bio-monitors of polycyclic aromatic hydrocarbons: Measuring the impact of features and traffic patterns. Heliyon 2023; 9:e20087. [PMID: 37810017 PMCID: PMC10559864 DOI: 10.1016/j.heliyon.2023.e20087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The role of road characteristics, including gradient and speed control devices, in influencing emission dynamics remains to be fully elucidated. Most studies have focused on fuel consumption as an indirect indicator of sector emissions instead of directly quantifying specific pollutants, like polycyclic aromatic hydrocarbons (PAHs). This research approach is often due to the complexities involved in capturing these pollutants and their subsequent analysis. Bio-monitors, such as lichens, offer an economically viable method. Their wide distribution across various habitats enables the comparison of PAH levels in diverse environments. Against this background, The present work analyses the ability of tropical lichens to indicate the effect that traffic patterns and geometric design features of roads (traffic activity, road gradient, traffic control devices, and vehicular speed) have on the emission of PAH concentration. Results showed that PAHs in lichens strongly correlated with the road gradient (Spearman correlation, p < 0.005 with R = 0.98 ). Each 1% increase in road gradient implies a rise of 24 ngPAH/gLichen in National Road. Additionally, a trend coherent of PAH concentration with the vehicle speed profile was observed on Panamericana Road. Speed control devices were associated with higher concentrations of PAHs due to acceleration and braking actions that increment fuel consumption. Finally, the results evidenced that lichens helped determine the source of aromatics and their carcinogenic potential using the diagnostic ratio of PAHs and the carcinogenic equivalence sum, respectively.
Collapse
Affiliation(s)
- Diana Marcela Uribe
- Programa de Ingeniería Ambiental, Universidad del Cauca, carrera 2 #15N, Popayán, Cauca, Colombia
| | - Lina María Ortega
- Programa de Ingeniería Ambiental, Universidad del Cauca, carrera 2 #15N, Popayán, Cauca, Colombia
| | - Marco Tadeu Grassi
- Department of Chemistry, Universidade Federal do Paraná, Jardim das Américas, Caixa Postal 19032, CEP 81531-980, Curitiba, Brazil
| | - Rafael Garrett Dolatto
- Department of Chemistry, Universidade Federal do Paraná, Jardim das Américas, Caixa Postal 19032, CEP 81531-980, Curitiba, Brazil
| | - Nazly Efredis Sánchez
- Departamento de Ingeniería Ambiental y Sanitaria, Universidad del Cauca, Carrera 2 #15N, Popayán, Cauca, Colombia
| |
Collapse
|