1
|
Liu G, Li C, Li D, Xue W, Hua T, Li F. Application of catalytic technology based on the piezoelectric effect in wastewater purification. J Colloid Interface Sci 2024; 673:113-133. [PMID: 38875783 DOI: 10.1016/j.jcis.2024.06.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
The demands of human life and industrial activities result in a significant influx of toxic contaminants into aquatic ecosystems. In particular, organic pollutants such as antibiotics and dye molecules, bacteria, and heavy metal ions are represented, posing a severe risk to the health and continued existence of living organisms. The method of removing pollutants from water bodies by utilizing the principle of the piezoelectric effect in combination with chemical catalytic processes is superior to other wastewater purification technologies because it can collect water energy, mechanical energy, etc. to achieve cleanliness and high removal efficiency. Herein, we briefly introduced the piezoelectric mechanisms and then reviewed the latest advances in the design and synthesis of piezoelectric materials, followed by a summary of applications based on the principle of piezoelectric effect to degrade pollutants in water for wastewater purification. Moreover, water purification technologies incorporating the piezoelectric effect, including piezoelectric effect-assisted membrane filtration, activation of persulfate, and battery electrocatalysis are elaborated. Finally, future challenges and research directions for the piezoelectric effect are proposed.
Collapse
Affiliation(s)
- Gaolei Liu
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chengzhi Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Donghao Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Wendan Xue
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
2
|
Fernandes RJC, Cardoso BD, Rodrigues ARO, Pires A, Pereira AM, Araújo JP, Pereira L, Coutinho PJG. Zinc/Magnesium Ferrite Nanoparticles Functionalized with Silver for Optimized Photocatalytic Removal of Malachite Green. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3158. [PMID: 38998250 PMCID: PMC11242515 DOI: 10.3390/ma17133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Water pollution is a major environmental challenge. Due to the inefficiency of conventional wastewater treatment plants in degrading many organic complex compounds, these recalcitrant pollutants end up in rivers, lakes, oceans and other bodies of water, affecting the environment and human health. Semiconductor photocatalysis is considered an efficient complement to conventional methods, and the use of various nanomaterials for this purpose has been widely explored, with a particular focus on improving their activity under visible light. This work focuses on developing magnetic and photoactive zinc/magnesium mixed ferrites (Zn0.5Mg0.5Fe2O4) by sol-gel and solvothermal synthesis methods, which are two of the most important and efficient methods used for the synthesis of ferrite nanoparticles. The nanoparticles (NPs) synthesized by the sol-gel method exhibited an average size of 14.7 nm, while those synthesized by the solvothermal method had an average size of 17.4 nm. Both types possessed a predominantly cubic structure and demonstrated superparamagnetic behavior, reaching a magnetization saturation value of 60.2 emu g-1. Due to the high recombination rate of electrons/holes, which is an intrinsic feature of ferrites, surface functionalization with silver was carried out to enhance charge separation. The results demonstrated a strong influence of adsorption and of the deposition of silver. Several optimization steps were performed during synthesis, allowing us to create efficient catalysts, as proved by the almost full removal of the dye malachite green attaining 95.0% (at a rate constant of 0.091 min-1) and 87.6% (at a rate constant of 0.017 min-1) using NPs obtained by the sol-gel and solvothermal methods, respectively. Adsorption in the dark accounted for 89.2% of the dye removal for nanoparticles prepared by sol-gel and 82.8% for the ones obtained by the solvothermal method. These results make mixed zinc/magnesium ferrites highly promising for potential industrial application in effluent photoremediation using visible light.
Collapse
Affiliation(s)
- Ricardo J C Fernandes
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET-Associate Laboratory, 4169-007 Porto, Portugal
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Beatriz D Cardoso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Rita O Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET-Associate Laboratory, 4169-007 Porto, Portugal
| | - Ana Pires
- LaPMET-Associate Laboratory, 4169-007 Porto, Portugal
- IFIMUP-Materials Physics Institute, University of Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - André M Pereira
- LaPMET-Associate Laboratory, 4169-007 Porto, Portugal
- IFIMUP-Materials Physics Institute, University of Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - João P Araújo
- LaPMET-Associate Laboratory, 4169-007 Porto, Portugal
- IFIMUP-Materials Physics Institute, University of Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - Luciana Pereira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Paulo J G Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET-Associate Laboratory, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Chen J, Liu K, Liu Y. Synergistic molecular mechanism of degradation in dye wastewater by Rhodopseudomonas palustris intimately coupled carbon nanotube - Silver modified titanium dioxide photocatalytic composite with sodium alginate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119913. [PMID: 38154222 DOI: 10.1016/j.jenvman.2023.119913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
The intimately coupled photocatalysis and biodegradation (ICPB), which combined the advantages of high oxidation capacity of photocatalysis and high mineralization rate of biodegradation, has demonstrated excellent removal performance in the degradation of azo dyes with highly toxic, refractory, mutagenic and carcinogenic. In order to explore the metagenomics mechanism of the ICPB system, a novel ICPB was prepared by coupling Rhodopseudomonas palustris (R. Palustris), carbon nanotube - silver modified titanium dioxide photocatalytic composite (CNT-Ag -TiO2, CAT) and sodium alginate (SA) (R. palustris/CAT@SA, R-CAT). Metagenomics sequencing was used to investigate the molecular mechanism of adaptation and degradation of dyes by photosynthetic microorganisms and the adaptive and synergistic interaction between photosynthetic microorganisms and photocatalyst. Experiments on the adaptability and degradability of photosynthetic microorganisms have proved that low concentration azo dyes could be utilized as carbon sources for growth of photosynthetic microorganisms. Metagenomics sequencing revealed that R. palustris was the main degrading bacterium in photosynthetic microorganisms and the functional genes related to carbohydrate metabolism, biological regulation and catalytic activity were abundant. It was found that the addition of photocatalyst significantly up-regulated the functional genes related to the catabolic process, electron transport, oxidoreductase activity and superoxide metabolism of organic matter in the photosynthetic microorganisms. Moreover, many key gene such as alpha-amylase, 1-acyl-sn-glycerol-3-phosphate acyltransferase, aldehyde dehydrogenase enrichment in microbial basal metabolism, such as enoyl-CoA hydratase, malate dehydrogenase, glutathione S-transferase enrichment in degrading azo dyes and electron transport, and many key gene such as undecaprenyl-diphosphatase, carbon storage regulator, DNA ligase enrichment in response to dyes and photocatalysts were discovered. These findings would contribute to a comprehensive understanding of the mechanism of degradation of dye wastewater by ICPB system, a series of genes was produced to adapt to environmental changes, and played synergistic role in terms of intermediate product degradation and electron transfer for degrading azo dyes. The photosynthetic microorganisms might be a promising microorganism for constructing ICPB system.
Collapse
Affiliation(s)
- Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| | - Kai Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| |
Collapse
|
4
|
Wang K, Chen Y, Cao MK, Zheng GD, Cai L. Influence of microbial community succession on biodegradation of municipal sludge during biodrying coupled with photocatalysis. CHEMOSPHERE 2024; 349:140901. [PMID: 38065267 DOI: 10.1016/j.chemosphere.2023.140901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
A 20-day sludge biodrying process was coupled with photocatalysis to improve biodrying efficiency and investigate the effect of photocatalysis on biodegradation. After biodrying, the moisture content in the coupled photocatalytic group (TCA) and the control group (TUCA) decreased from 63.61% to 50.82% and 52.94%, respectively, and the volatile solids content decreased from 73.18% to 63.42% and 64.39%, respectively. Neutral proteinase activity decreased by 9.38% and 28.69%, and lipase activity decreased by 6.12% and 26.17%, respectively, indicating that photocatalysis helped maintain neutral proteinase and lipase activities. The Chao1 and Shannon indices showed that photocatalysis increased fungal diversity and reduced bacterial richness and diversity. The β diversity clustering analysis indicated that the bacterial community structure during the thermophilic phase in TCA differed from that in TUCA. The Kyoto Encyclopedia of Genes and Genomes annotation showed that photocatalysis has the potential to promote the synthesis and degradation of ketone bodies. Biodrying coupled with photocatalysis can improve the dewatering of sludge without negatively affecting biodegradation.
Collapse
Affiliation(s)
- Kan Wang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Ying Chen
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Meng-Ke Cao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Guo-Di Zheng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Cai
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
5
|
Chen D, Li R, Nan F, Li H, Huang P, Zhan W. Co-adsorption mechanisms of As(V) and Cd(II) by three-dimensional flower-like Mg/Al/Fe-CLDH synthesized by "memory effect". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103044-103061. [PMID: 37676456 DOI: 10.1007/s11356-023-29673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Due to the different physical and chemical properties such as surface charge and ion morphology between As(V) and Cd(II), it is challenging to remove As(V) and Cd(II), especially at low concentrations. This study constructed a novel three-dimension nanocomposite adsorbent Mg/Al/Fe-CLDH (CFMA) by "hydrothermal + calcination method". And different initial concentration ratios (Cd: As=1: 2, 1: 1, 2: 1) were used to investigate the removal performance of CFMA for Cd(II) and As(V). When the concentration ratio Cd: As=1: 2, the residual concentrations of As(V) and Cd(II) were 8.7 μg/L and 4.2 μg/L, respectively, which met the drinking water standard; In the co-adsorption system, As(V) and Cd(II) influence each other's adsorption behavior due to the anionic bridge and shielding effect of As(V) on Cd(II), As(V) gradually changed from monolayer adsorption to multi-layer adsorption dominant, while Cd(II) gradually changed from multi-layer adsorption to monolayer adsorption dominant. In this paper, the structure-activity relationship between material structure and synchronous removal of arsenic and cadmium was clarified, and the mechanism of synchronous removal was revealed, which provided technical guidance for synchronous removal of As(V) and Cd(II) from non-ferrous metal smelting wastewater.
Collapse
Affiliation(s)
- Donghui Chen
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Ruiyue Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Fangming Nan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Hong Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Ping Huang
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Wei Zhan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China.
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China.
| |
Collapse
|
6
|
Liu Q, Hou J, Zeng Y, Wu J, Miao L, Yang Z. Fabrication of an intimately coupled photocatalysis and biofilm system for removing sulfamethoxazole from wastewater: Effectiveness, degradation pathway and microbial community analysis. CHEMOSPHERE 2023; 328:138507. [PMID: 36966927 DOI: 10.1016/j.chemosphere.2023.138507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Sulfamethoxazole (SMX) is an extensively applied antibiotic frequently detected in municipal wastewater, which cannot be efficiently removed by conventional biological wastewater processes. In this work, an intimately coupled photocatalysis and biodegradation (ICPB) system consisting of Fe3+-doped graphitic carbon nitride photocatalyst and biofilm carriers was fabricated to remove SMX. The results of wastewater treatment experiments showed that 81.2 ± 2.1% of SMX was removed in the ICPB system during the 12 h, while only 23.7 ± 4.0% was removed in the biofilm system within the same time. In the ICPB system, photocatalysis played a key role in removing SMX by producing hydroxyl radicals and superoxide radicals. Besides, the synergism between photocatalysis and biodegradation enhanced the mineralization of SMX. To understand the degradation process of SMX, nine degradation products and possible degradation pathways of SMX were analyzed. The results of high throughput sequencing showed that the diversity, abundance, and structure of the biofilm microbial community remained stable in the ICPB system at the end of the experiments, which suggested that microorganisms had accommodated to the environment of the ICPB system. This study could provide insights into the application of the ICPB system in treating antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Qidi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuan Zeng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, PR China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zijun Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
7
|
Rahman KH, Kar AK, Chen KC, Chen CJ. Highly effective Fe-doped TiO 2nanoparticles for removal of toxic organic dyes under visible light illumination. NANOTECHNOLOGY 2023; 34:245707. [PMID: 36917852 DOI: 10.1088/1361-6528/acc407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
This article addresses the synthesis of Fe3+doped TiO2nanoparticles with variations of molar concentrations of Fe3+and their adequate use as potential photocatalysts for Photocatalysis applications. Synthesized photocatalysts were characterized thoroughly by different analytical techniques in terms of morphological, chemical, structural, crystalline, optical, electronic structure, surface area etc properties. The occurrence of red shift phenomenon of the energy band gap attributes to the transfer of charges and transition between the d electrons of dopant and conduction band (CB) or valence band (VB) of TiO2. The doping of Fe3+ions generates more trap sites for charge carriers with the surface trap sites. Thorough experimental conclusions revealed that the Fe3+ions necessarily regulate the catalytic property of TiO2nanomaterial. The obtained total degradation efficiency rate of Methylene Blue (MB) was 93.3% in the presence of 0.1 M Fe3+in the host material and for Malachite Green Oxalate the efficiency was 100% in the presence of 0.05 M and 0.1 M Fe3+in the host material. In both the cases the total visible light irradiation time was 90 min. The adsorption properties of the photocatalysts have been also performed in a dark for 90 min in the presence of MB dye. However, till now there are hardly reported photocatalysts which shows complete degradation of these toxic organic dyes by visible light driven photocatalysis. of potential values of valence and conduction band shows the production of active oxidizing species for hydrogen yield and the possible mechanism of the Schottky barrier has been proposed. A schematic diagram of visible light driven Photocatalysis has been pictured showing degradation activity of Fe3+-TiO2catalysts sample.
Collapse
Affiliation(s)
- Kazi Hasibur Rahman
- Micro and Nanoscience Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| | - Asit Kumar Kar
- Micro and Nanoscience Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| | - Kuan-Chung Chen
- Department of Environmental Science & Engineering, National Pingtung University of Science and Technology, Taiwan
| | - Ching-Jung Chen
- Department of Environmental Science & Engineering, National Pingtung University of Science and Technology, Taiwan
| |
Collapse
|
8
|
Dong Y, Xu D, Zhang J, Wang Q, Pang S, Zhang G, Campos LC, Lv L, Liu X, Gao W, Sun L, Ren Z, Wang P. Enhanced antibiotic wastewater degradation by intimately coupled B-Bi 3O 4Cl photocatalysis and biodegradation reactor: Elucidating degradation principle systematically. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130364. [PMID: 36463742 DOI: 10.1016/j.jhazmat.2022.130364] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Intimately coupled photocatalysis and biodegradation (ICPB) is an emerging technology that has potential applications in the degradation of bio-recalcitrant pollutants. However, the interaction principles between photocatalysts and biofilms in ICPB have not been well developed. This article covers a cooperative degradation scheme coupling photocatalysis and biodegradation for efficient degradation and mineralization of ciprofloxacin (CIP) using ICPB with B-doped Bi3O4Cl as the photocatalyst. In consequence, a removal rate of ∼95 % is reached after 40 d. The biofilms inside the ICPB carriers can mineralize the photocatalytic products, thus improving the removal rate of total organic carbon (TOC) by more than 20 %. Interior biofilms are not destroyed by CIP or photocatalysis, and they adapt to ICPB of CIP by enriching in Pseudoxanthomonas, Ferruginibacter, Clostridium, Stenotrophomonas and Comamonas and reconstructing their microbial communities using energy produced by the light-excited photoelectrons. Furthermore, this research gives new opinion into the degradation principles of the ICPB system.
Collapse
Affiliation(s)
- Yilin Dong
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Dongyu Xu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Jie Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Qiuwen Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Shaoxuan Pang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Luiza C Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Longyi Lv
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Xiaoyang Liu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Wenfang Gao
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China.
| | - Pengfei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Tianjin Key Laboratory of Clean Energy and Pollutant Control, Tianjin 300401, China.
| |
Collapse
|
9
|
Al-Nuaim MA, Alwasiti AA, Shnain ZY. The photocatalytic process in the treatment of polluted water. CHEMICAL PAPERS 2023; 77:677-701. [PMID: 36213320 PMCID: PMC9527146 DOI: 10.1007/s11696-022-02468-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO2-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Marwah A. Al-Nuaim
- Chemical Engineering, Department, University of Technology, Baghdad, Iraq
| | - Asawer A. Alwasiti
- Chemical Engineering, Department, University of Technology, Baghdad, Iraq
| | - Zainab Y. Shnain
- Chemical Engineering, Department, University of Technology, Baghdad, Iraq
| |
Collapse
|
10
|
Qu D, Zhang J, Wan D, Niu Z. Perchlorate removal by a combined heterotrophic and bio-electrochemical hydrogen autotrophic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158178. [PMID: 35995156 DOI: 10.1016/j.scitotenv.2022.158178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Here, a novel combined heterotrophic and bio-electrochemical hydrogen autotrophic (CHBHA) system was developed to remove perchlorate under low chemical dosages and energy consumption. The perchlorate removal performance at various hydraulic retention times (HRTs) and acetate dosages was investigated. For influent containing 10 ± 0.10 mg/L perchlorate, the optimal removal efficiency by the CHBHA system was 98.96 ± 1.62 %, 92.99 ± 2.99 %, 97.85 ± 0.41 %, and 98.24 ± 1.56 % at different operating stages. Perchlorate was mainly removed in the heterotrophic part (H-part) at a sufficient HRT (6 h) and acetate dosage (14.75 mg/L). At other stages, perchlorate was synergistically removed by the H-part and electrochemical hydrogen autotrophic part (E-part). Since the H-part removed some perchlorate, the E-part's applied current decreased, thus reducing energy costs. The maximum current efficiency of CHBHA system was 22.09 %. Compared with the single E-part system, the combined system used 65 % less energy. Perchlorate was converted into active chlorine in the E-part, which improved the effluent quality. The bacterial community structures of the two parts were significantly different. Comamonas, Dechloromonas, Acinetobacter, and Chryseobacterium were enriched in the H-part, and the dominant genera in the E-part were Thauera, Azonexus, Hydrogenophaga, and Tissierella.
Collapse
Affiliation(s)
- Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Junhui Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Dongjin Wan
- Collage of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Zhenhua Niu
- Collage of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
11
|
Annealing and Plasma Effects on the Structural and Photocatalytic Properties of TiO2 Fibers Produced by Electrospinning. Catalysts 2022. [DOI: 10.3390/catal12111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, a combined method of heat treatment and plasma surface modification was used to improve the nanostructures and photocatalytic activity of electrospun TiO2 fibers. Based on the tuning effect of the annealing temperature from 500 to 800 °C, further improvements via the generation of H2 radiofrequency plasma reactions on the fiber’s surface were investigated. It was found that the anatase–rutile phase transition starts to occur at around 700 °C, which is higher than the common temperature for TiO2. The interfacial effect is generated by the symbiosis relationship between these two phases in the fibers, which can enhance photocatalytic activity since the anatase–rutile heterojunction in mixed-phase TiO2 is formed. The dramatic rise in oxygen vacancies on the fiber’s surface is created by the H2 plasma; this leads to the number of trapped electrons increasing and results in an accelerated separation between the photogenerated electrons and holes. Therefore, the photocatalytic mechanism, including the anatase–rutile heterojunction and the TiO2 fiber band structure containing oxygen vacancies, is predicted. The degradation rate was significantly enhanced (1.5 times) by increasing the annealing temperature up to 700 °C, which can be further improved upon after treatment with surface H2 plasma.
Collapse
|
12
|
Wang J, Xiong J, Feng Q, Wan Z, Zhou Z, Xiao B, Zhang J, Singdala O. Intimately coupled photocatalysis and functional bacterial system enhance degradation of 1,2,3- and 1,3,5-trichlorobenzene. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115595. [PMID: 35772268 DOI: 10.1016/j.jenvman.2022.115595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Intimate coupling of photocatalysis and biodegradation (ICPB) is considered a promising approach for the degradation of recalcitrant organic compounds. In this work, using Trichoderma with benzene degradation ability coupled with activated sludge as a biological source and sugarcane bagasse cellulose composite as a carrier, the ICPB system showed excellent degradation and mineralization of trichlorobenzene under visible light induction. The biofilm inside the ICPB carrier can degrade and mineralize the photocatalytic products. ICPB increased the degradation efficiency of 1,2,3-TCB and 1,3,5-TCB by 12.43% and 4.67%, respectively, compared to photocatalysis alone. The biofilms inside the ICPB carriers can mineralize photocatalytic products, which increases the mineralization efficiency by 18.74%. According to the analysis of intermediates, the degradation of 1,2,3-TCB in this coupled system involved stepwise dechlorination and ring opening. The biofilm in ICPB carrier evolved to be enriched in Cutaneotrichosporon, Trichoderma, Apiotrichum, Zoogloea, Dechloromonas, Flavihumibacter and Cupriavidus, which are known for biodegradable aromatic hydrocarbon and halogenate. Novel microbial seeds supplemented with Trichoderma-based ICPB seem to provide a new potential strategy for effective degradation and mineralization of TCB.
Collapse
Affiliation(s)
- Jue Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China.
| | - Qilin Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Zhou Wan
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Zhenqi Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Bing Xiao
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Jiaming Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Outhay Singdala
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, China.
| |
Collapse
|
13
|
Torres-Limiñana J, Feregrino-Pérez AA, Vega-González M, Escobar-Alarcón L, Cervantes-Chávez JA, Esquivel K. Green Synthesis via Eucalyptus globulus L. Extract of Ag-TiO2 Catalyst: Antimicrobial Activity Evaluation toward Water Disinfection Process. NANOMATERIALS 2022; 12:nano12111944. [PMID: 35683797 PMCID: PMC9183104 DOI: 10.3390/nano12111944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
The problem of water pollution by persistent substances and microorganisms requires solutions that materials such as silver-modified titanium dioxide can provide due to their excellent photocatalytic and antimicrobial properties. However, the synthesis methods conventionally used to obtain these materials involve toxic chemical reagents such as sodium borohydride (NaBH4). The search for alternative synthesis methods that use environmentally friendly substances, such as the biosynthesis method, was evaluated. Silver-titanium dioxide (Ag-TiO2) was synthesized by a Eucalyptus globulus L. extract as a reductive agent through sol-gel and microwave-assisted sol-gel processes. Four different solvents were tested to extract secondary metabolites to determine their roles in reducing silver nanoparticles. Titanium dioxide nanoparticles with sizes from 11 to 14 nm were obtained in the anatase phase, and no narrowing of the bandgap was observed (3.1–3.2 eV) for the Ag-TiO2 materials compared with the pure TiO2. Interestingly, the bacterial inhibition values were close to 100%, suggesting an effective antimicrobial mechanism related to the properties of silver. Finally, by the physicochemical characterization of the materials and their antimicrobial properties, it was possible to obtain a suitable biosynthesized Ag-TiO2 material as a green option for water disinfection that may be compared to the conventional methods.
Collapse
Affiliation(s)
- Jacqueline Torres-Limiñana
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
| | - Ana A. Feregrino-Pérez
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
| | - Marina Vega-González
- Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001, Santiago de Queretaro 76230, Mexico;
| | - Luis Escobar-Alarcón
- Departamento de Física, ININ, Carr. México-Toluca, La Marquesa, Ocoyoacac 52750, Mexico;
| | - José Antonio Cervantes-Chávez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Anillo Vial Fray Junípero Serra, Km 8, Santiago de Queretaro 76000, Mexico;
| | - Karen Esquivel
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
- Correspondence: ; Tel.: +52-442-192-1200 (ext. 65401)
| |
Collapse
|