1
|
Lin K, Jian J, Zhang Y, Liu Y, Li S, Zhao Y, Xu H. Study on Plant-blanket to reduce heavy metal migration caused by precipitation and to improve the soil environment of pyritic tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173376. [PMID: 38795991 DOI: 10.1016/j.scitotenv.2024.173376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
The increasing demand for mineral resources due to industrial development has led to significant tailings pollution during the mineral extraction process. In the southwestern region of China, a large amount of pyritic tailings containing pyrite cinder easily leaches heavy metals and other pollutants when exposed to precipitation, resulting in widespread soil contamination. Effective remediation methods are urgently needed to address this issue. This study utilized naturally occurring Plant-blanket formed by the symbiosis of moss and herbaceous plants on pyritic tailings as restoration material. Through leaching experiments and staining tracer techniques, the study investigated the ability of Plant-blanket to reduce the migration of heavy metals from pyrite cinder to soil under the influence of precipitation and its role in improving the soil environment. The results showed that within 12 h, the Plant-blanket could absorb water equivalent to 206.9 % of its own weight and had good water retention ability. It reduced the stained area ratio of soil horizontal and vertical profiles after precipitation leaching by a maximum of 76.08 % and 46.41 %, respectively, and improved the pH, cation exchange capacity (CEC), bulk density, and water content of soil at different depths. In addition, after being covered by Plant-blanket, the migration of Cd and Cu was reduced by a maximum of 44.35 % and 55.77 % respectively, and it increased the diversity and abundance of bacterial communities, promoting the recovery of soil microbial ecological functions. These findings indicate that Plant-blanket can regulate water and improve soil environment, and has certain control ability on the migration of Cd and Cu produced by pyritic tailings. Meanwhile, Plant-blanket plays an important role in improving the soil environment in mining areas and promoting ecosystem restoration, providing valuable reference for further exploration of ecological restoration of tailings.
Collapse
Affiliation(s)
- Kangkai Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jiannan Jian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yumei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yikai Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Shiyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 61006510, Sichuan, PR China.
| |
Collapse
|
2
|
Yan S, Xu S, Lei S, Gao Y, Chen K, Shi X, Guo Y, Bilyera N, Yuan M, Yao H. Hyperaccumulator extracts promoting the phytoremediation of rare earth elements (REEs) by Phytolacca americana: Role of active microbial community in rhizosphere hotspots. ENVIRONMENTAL RESEARCH 2024; 252:118939. [PMID: 38621629 DOI: 10.1016/j.envres.2024.118939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The increased usage of rare earth elements (REEs) leads to the extensive exploitation of rare earth mines, and the REEs pollution in soil caused by the legacy mine tailings has brought great harm to environment and human health. Although Phytolacca americana can remove REEs from contaminated soil to some extent, there is still an urgent problem to improve its efficiency. Hyperaccumulator extract is a new organic material with potential in metal phytoextraction, but its role in REEs phytoremediation and the related underlying processes remain unclear. In this study, hyperaccumulator extracts from P. americana root (PR), stem (PS), leaf (PL) and EDTA were used to improve the phytoremediation efficiency of REEs with P. americana. Soil zymography was applied to assess the enzyme hotspots' spatial distribution in the rhizosphere, and the hotspots' microbial communities were also identified. The results indicated that the application of hyperaccumulator extracts improved the biomass and REEs uptake of P. americana, and the highest REEs content in plant was observed in the treatment of PS, which increased 299% compared to that of the control. Hotspots area of β-glucosidase, leucine aminopeptidase and acid phosphatase were concentrated in the pant rhizosphere along the roots and increased 2.2, 5.3 and 2.2 times after PS application compared to unamended soils. The PS application increased the relative abundance of Proteobacteria, Cyanobacteria, Bacteroidota and Firmicutes phyla in rhizosphere. Soil fungi have a higher contribution on promoting REEs activation than that of bacteria. Available P and extractable REEs were leading predictors for the plant biomass and REEs concentrations. The co-occurrence network showed that the application of PS creates a more efficient and stable microbial network compared to other treatments. In conclusion, stem-derived hyperaccumulator extract is excellent in stimulating REEs phytoremediation with P. americana by improving hotspots microbial activities and form a healthy rhizosphere microenvironment.
Collapse
Affiliation(s)
- Shengpeng Yan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shengwen Xu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shihan Lei
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuan Gao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Keyi Chen
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiaoyu Shi
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yingying Guo
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Nataliya Bilyera
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, 72076, Tuebingen, Germany
| | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Huaiying Yao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
3
|
Yu H, Pu Z, Wang S, Chen Y, Wang C, Wan Y, Dong Y, Wang J, Wan S, Wang D, Xie Z. Mitigating microplastic stress on peanuts: The role of biochar-based synthetic community in the preservation of soil physicochemical properties and microbial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172927. [PMID: 38719057 DOI: 10.1016/j.scitotenv.2024.172927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Tire-derived rubber crumbs (RC), as a new type of microplastics (MPs), harms both the environment and human health. Excessive use of plastic, the decomposition of which generates microplastic particles, in current agricultural practices poses a significant threat to the sustainability of agricultural ecosystems, worldwide food security and human health. In this study, the application of biochar, a carbon-rich material, to soil was explored, especially in the evaluation of synthetic biochar-based community (SynCom) to alleviate RC-MP-induced stress on plant growth and soil physicochemical properties and soil microbial communities in peanuts. The results revealed that RC-MPs significantly reduced peanut shoot dry weight, root vigor, nodule quantity, plant enzyme activity, soil urease and dehydrogenase activity, as well as soil available potassium, and bacterial abundance. Moreover, the study led to the identification highly effective plant growth-promoting rhizobacteria (PGPR) from the peanut rhizosphere, which were then integrated into a SynCom and immobilized within biochar. Application of biochar-based SynCom in RC-MPs contaminated soil significantly increased peanut biomass, root vigor, nodule number, and antioxidant enzyme activity, alongside enhancing soil enzyme activity and rhizosphere bacterial abundance. Interestingly, under high-dose RC-MPs treatment, the relative abundance of rhizosphere bacteria decreased significantly, but their diversity increased significantly and exhibited distinct clustering phenomenon. In summary, the investigated biochar-based SynCom proved to be a potential soil amendment to mitigate the deleterious effects of RC-MPs on peanuts and preserve soil microbial functionality. This presents a promising solution to the challenges posed by contaminated soil, offering new avenues for remediation.
Collapse
Affiliation(s)
- Hong Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Zitian Pu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Shuaibing Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Chao Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Yongshan Wan
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yuanjie Dong
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Jianguo Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shubo Wan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China.
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
4
|
Kou B, Yu T, Tang J, Zhu X, Yuan Y, Tan W. Kitchen compost-derived humic acid application promotes ryegrass growth and enhances the accumulation of Cd: An analysis of the soil microenvironment and rhizosphere functional microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170879. [PMID: 38354798 DOI: 10.1016/j.scitotenv.2024.170879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Phytoremediation is an environmentally friendly and safe approach for remediating environments contaminated with heavy metals. Humic acid (HA) has high biological activity and can effectively complex with heavy metals. However, whether HA affects available Cd storage and the Cd accumulation ability of plants by altering the soil microenvironment and the distribution of special functional microorganisms remains unclear. Here, we investigated the effects of applying kitchen compost-derived HA on the growth and Cd enrichment capacity of ryegrass (Lolium perenne L.). Additionally, the key role of HA in regulating the structure of rhizosphere soil bacterial communities was identified. HA promoted the growth of perennial ryegrass and biomass accumulation and enhanced the Cd enrichment capacity of ryegrass. The positive effect of HA on the soil microenvironment and rhizosphere bacterial community was the main factor promoting the growth of ryegrass, and this was confirmed by the significant positive correlation between the ryegrass growth index and the content of SOM, AP, AK, and AN, as well as the abundance of rhizosphere growth-promoting bacteria such as Pseudomonas, Steroidobacter, Phenylobacterium, and Caulobacter. HA passivated Cd and inhibited the translocation capacity of ryegrass. The auxiliary effect of resistant bacteria on plants drove the absorption of Cd by ryegrass. In addition, HA enhanced the remediation of Cd-contaminated soil by ryegrass under different Cd levels, which indicated that kitchen compost-derived HA could be widely used for the phytoremediation of Cd-contaminated soil. Generally, our findings will aid the development of improved approaches for the use of kitchen compost-derived HA for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Bing Kou
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jun Tang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Yang W, Sun T, Sun Y. Adsorption mechanism of Cd 2+ on microbial inoculant and its potential for remediation Cd-polluted farmland soils. CHEMOSPHERE 2024; 352:141349. [PMID: 38307335 DOI: 10.1016/j.chemosphere.2024.141349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The adsorption characteristics and mechanism of Cd2+ on microbial inoculant (MI) mainly composed of Bacillus subtilis, Bacillus thuringiensis and Bacillus amyloliquefaciens, and its potential for remediation Cd polluted soils through batch adsorption and soil incubation experiments. It was found that the Freundlich isotherm model and the pseudo-second-order kinetics were more in line with the adsorption processes of Cd2+. The maximum adsorption capacity predicted by Langmuir isotherm model suggested that of MI was 57.38 mg g-1. Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) images exhibited the surface structure of MI was damaged to varying degrees after adsorption, and Cd element was distributed on the surface of MI through ion exchange. X-ray diffraction (XRD) results showed that CdCO3 was formed on the surface of MI. Moreover, the functional groups (-OH, C-H, and -NH) involved in the adsorption of Cd2+ through fourier transform infrared spectroscopy (FTIR). After applying MI to Cd-contaminated soil, it was found that soil pH, conductivity (EC) and soil organic matter (SOM) increased by 0.84 %-2.43 %, 31.6 %-241.48 %, and 8.11 %-24.1 %, respectively, when compared with the control treatments. The content of DTPA-Cd in the soils was significantly (P < 0.05) reduced by 15.48 %-29.68 % in contrast with CK, and the Cd speciation was transformed into a more stable residual fraction. The activities of urease, phosphatase and sucrose were increased by 3.5 %-45.18 %, 57.00 %-134.18 % and 52.51 %-70.52 %, respectively, compared with CK. Therefore, MI could be used as an ecofriendly and sustainable material for bioremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Wenhao Yang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA)/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA)/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Yan Z, Wang Z, Si G, Chen G, Feng T, Liu C, Chen J. Bacteria-loaded biochar for the immobilization of cadmium in an alkaline-polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1941-1953. [PMID: 38044401 DOI: 10.1007/s11356-023-31299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The combination of biochar and bacteria is a promising strategy for the remediation of Cd-polluted soils. However, the synergistic mechanisms of biochar and bacteria for Cd immobilization remain unclear. In this study, the experiments were conducted to evaluate the effects of the combination of biochar and Pseudomonas sp. AN-B15, on Cd immobilization, soil enzyme activity, and soil microbiome. The results showed that biochar could directly reduce the motility of Cd through adsorption and formation of CdCO3 precipitates, thereby protecting bacteria from Cd toxicity in the solution. In addition, bacterial growth further induces the formation of CdCO3 and CdS and enhances Cd adsorption by bacterial cells, resulting in a higher Cd removal rate. Thus, bacterial inoculation significantly enhances Cd removal in the presence of biochar in the solution. Moreover, soil incubation experiments showed that bacteria-loaded biochar significantly reduced soil exchangeable Cd in comparison with other treatments by impacting soil microbiome. In particular, bacteria-loaded biochar increased the relative abundance of Bacillus, Lysobacter, and Pontibacter, causing an increase in pH, urease, and arylsulfatase, thereby passivating soil exchangeable Cd and improving soil environmental quality in the natural alkaline Cd-contaminated soil. Overall, this study provides a systematic understanding of the synergistic mechanisms of biochar and bacteria for Cd immobilization in soil and new insights into the selection of functional strain for the efficient remediation of the contaminated environments by bacterial biochar composite.
Collapse
Affiliation(s)
- Zhengjian Yan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Zitong Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guangzheng Si
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guohui Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China.
| |
Collapse
|
7
|
Guan TK, Wang QY, Li JS, Yan HW, Chen QJ, Sun J, Liu CJ, Han YY, Zou YJ, Zhang GQ. Biochar immobilized plant growth-promoting rhizobacteria enhanced the physicochemical properties, agronomic characters and microbial communities during lettuce seedling. Front Microbiol 2023; 14:1218205. [PMID: 37476665 PMCID: PMC10354297 DOI: 10.3389/fmicb.2023.1218205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Spent mushroom substrate (SMS) is the by-products of mushroom production, which is mainly composed of disintegrated lignocellulosic biomass, mushroom mycelia and some minerals. The huge output and the lack of effective utilization methods make SMS becoming a serious environmental problem. In order to improve the application of SMS and SMS derived biochar (SBC), composted SMS (CSMS), SBC, combined plant growth-promoting rhizobacteria (PGPR, Bacillus subtilis BUABN-01 and Arthrobacter pascens BUAYN-122) and SBC immobilized PGPR (BCP) were applied in the lettuce seedling. Seven substrate treatments were used, including (1) CK, commercial control; (2) T1, CSMS based blank control; (3) T2, T1 with combined PGPR (9:1, v/v); (4) T3, T1 with SBC (19:1, v/v); (5) T4, T1 with SBC (9:1, v/v); (6) T5, T1 with BCP (19:1, v/v); (7) T6, T1 with BCP (9:1, v/v). The physicochemical properties of substrate, agronomic and physicochemical properties of lettuce and rhizospheric bacterial and fungal communities were investigated. The addition of SBC and BCP significantly (p < 0.05) improved the total nitrogen and available potassium content. The 5% (v/v) BCP addiction treatment (T5) represented the highest fresh weight of aboveground and underground, leave number, chlorophyll content and leaf anthocyanin content, and the lowest root malondialdehyde content. Moreover, high throughput sequencing revealed that the biochar immobilization enhanced the adaptability of PGPR. The addition of PGPR, SBC and BCP significantly enriched the unique bacterial biomarkers. The co-occurrence network analysis revealed that 5% BCP greatly increased the network complexity of rhizospheric microorganisms and improved the correlations of the two PGPR with other microorganisms. Furthermore, microbial functional prediction indicated that BCP enhanced the nutrient transport of rhizospheric microorganisms. This study showed the BCP can increase the agronomic properties of lettuce and improve the rhizospheric microbial community.
Collapse
Affiliation(s)
- Ti-Kun Guan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qiu-Ying Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Jia-Shu Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Hui-Wen Yan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qing-Jun Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jian Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chao-Jie Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ying-Yan Han
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ya-Jie Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guo-Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
8
|
Liu LH, Zhang JY, Tang GX, Huang YH, Xie XQ, Geng J, Lü HX, Li H, Li YW, Mo CH, Zhao HM, Cai QY. Endophytic Phthalate-degrading Bacillus subtilis N-1-gfp colonizing in soil-crop system shifted indigenous bacterial community to remove di-n-butyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130993. [PMID: 36812730 DOI: 10.1016/j.jhazmat.2023.130993] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Endophytic bacteria can degrade toxic phthalate (PAEs). Nevertheless, the colonization and function of endophytic PAE-degrader in soil-crop system and their association mechanism with indigenous bacteria in PAE removal remain unknown. Here, endophytic PAE-degrader Bacillus subtilis N-1 was marked with green fluorescent protein gene. Inoculated strain N-1-gfp could well colonize in soil and rice plant exposed to di-n-butyl phthalate (DBP) as directly confirmed by confocal laser scanning microscopy and realtime PCR. Illumina high-throughput sequencing demonstrated that inoculated N-1-gfp shifted indigenous bacterial community in rhizosphere and endosphere of rice plants with significant increasing relative abundance of its affiliating genus Bacillus than non-inoculation. Strain N-1-gfp exhibited efficient DBP degradation with 99.7% removal in culture solutions, and significantly promoted DBP removal in soil-plant system. Strain N-1-gfp colonization help plant enrich specific functional bacteria (e.g., pollutant-degrading bacteria) with significant higher relative abundances and stimulated bacterial activities (e.g., pollutant degradation) compared with non-inoculation. Furthermore, strain N-1-gfp displayed strong interaction with indigenous bacteria for accelerating DBP degradation in soil, decreasing DBP accumulation in plants and promoting plant growth. This is the first report on well colonization of endophytic DBP-degrader Bacillus subtilis in soil-plant system and its bioaugmentation with indigenous bacteria for promoting DBP removal.
Collapse
Affiliation(s)
- Li-Hui Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jia-Yan Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guang-Xuan Tang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang-Qing Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jun Geng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui-Xiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Liu Y, Zhou J, Sun D, Chen H, Qin J, Chen G, Qiu R. Polyaspartic acid assisted-phytoremediation of cadmium-contaminated farmland: Phytoextraction efficiency, soil quality, and rhizosphere microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160736. [PMID: 36493821 DOI: 10.1016/j.scitotenv.2022.160736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Cadmium is highly toxic and one of the most dangerous metal pollutants in soil, and poses a serious threat to human health through soil-crop-food chain transmission. Polyaspartic acid (PASP) is a biodegradable additive that is environment-friendly compared to traditional chelating agents. Current studies have explored its effect on auxiliary phytoextraction at a laboratory scale; however, the method is still rarely reported at the field scale. Therefore, this study used two ecotypes of Pennisetum sinese in a field experiment for 3 years in Jiaoxi Township, Liuyang City, Hunan Province, China, to understand the effect of PASP on the phytoremediation of Cd-contaminated soil and soil quality through long-term field studies. Moreover, because the soil microbial community responds well to the phytoremediation effect of heavy metal (including Cd)-contaminated soil, the changes in rhizosphere soil microbial community diversity and composition were analyzed. After 2 years of PASP-enhanced phytoremediation, the PASP application increased the total Cd reduction in soil by 237 % and 255 %, and the soil DTPA-extractable Cd content decreased to 0.092 and 0.087 mg kg-1. When the application of PASP ceased in the third year, the two ecotypes of P. sinese obtained after harvest could achieve feed safety. Our study showed that the application of PASP could significantly increase the Cd extraction capacity and shoot biomass of P. sinese, and maintain soil health by optimizing the composition and structure of rhizosphere bacterial communities. The rhizosphere bacterial community structure was improved and dominated by Acidobacteriota, Proteobacteria, and Chloroflexi at the phylum level, and the increased abundance of Acetobacter, Enterobacter, Pseudomonas, and Stenotrophomonas at the genus level may promote heavy metal detoxification in soil, plant growth, and phytoremediation. Long-term field monitoring demonstrated that the low-cost and eco-friendly features of PASP made it a good candidate for enhancing phytoextraction efficiency and regulating soil microbial communities for remediation.
Collapse
Affiliation(s)
- Yanwei Liu
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Juanjuan Zhou
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Daolin Sun
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haifeng Chen
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junhao Qin
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guikui Chen
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Sun L, Zhang G, Li X, Zhang X, Hang W, Tang M, Gao Y. Effects of biochar on the transformation of cadmium fractions in alkaline soil. Heliyon 2023; 9:e12949. [PMID: 36820180 PMCID: PMC9938413 DOI: 10.1016/j.heliyon.2023.e12949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
To investigate the chemical properties in the biochar-mediated transformation of soil cadmium (Cd) fractions, the effects of biochar applied at different pyrolysis temperatures on soil Cd-fractions, pH value, and soil organic matter (SOM) were studied through an in-lab incubation experiment on contaminated soil. The results showed that the dissolved organic carbon (DOC) of CsBC300 (biochar prepared at 300 °C) was significantly higher (up to 1.31 times) than that of CsBC600 (biochar prepared at 600 °C). However, CsBC600 was more aromatic. Due to the difference in pyrolysis temperatures, the Cd deactivation mechanism of CsBC300 and CsBC600 was mainly to provide a large amount of organic matter and aromatic functional groups to the soil, respectively. The addition of these two biochar types significantly reduced the acid-extracted Cd content, by 76.56-83.52% and 70.48-76.81%, respectively. Contrastingly, it increased the residual Cd content by 2.26-2.36 and 2.08-2.29 times, respectively, which promoted the Cd transformation from the unstable to the stable state. However, CsBC300 had slightly better deactivation effect than CsBC600 on the 120th day, which was due to the decrease of soil pH and the increased SOM content. These study results can provide a theoretical reference for the remediation of Cd-contaminated alkaline soil.
Collapse
Affiliation(s)
- Lianglun Sun
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Guoquan Zhang
- Shandong Provincial Lunan Geology and Exploration Institute, Jining, Shandong, 272100, China
| | - Xinyu Li
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Xinyu Zhang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Wei Hang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China,Corresponding author.
| | - Yan Gao
- Shandong Provincial Lunan Geology and Exploration Institute, Jining, Shandong, 272100, China
| |
Collapse
|