1
|
Zhang K, Zheng S, Zhao C, Liang J, Sun X. Bioturbation effects and behavioral changes in buried bivalves after exposure to microplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136765. [PMID: 39642743 DOI: 10.1016/j.jhazmat.2024.136765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Microplastic pollution has become an increasing concern. Vertical transport of microplastics is one of the major research questions concerning the distribution and fate of microplastics in the marine environment, and biologically mediated vertical transport is particularly significant. However, studies on the effects of different types of benthic organisms on the vertical distribution of microplastics in sediments are still scarce. The results of this study revealed that when exposed to environmentally relevant concentrations of fluorescent polystyrene microbeads (200 µm), Manila clams (Ruditapes philippinarum) exhibited prolonged acclimation period, yet subsequent burrowing behavior (burrowing rate and burrowing velocity) was unaffected. The condition index, clearance rate, and oxygen consumption rate of the clams similarly exhibited no stress response after 14 days of exposure. We determined that microplastics were rapidly transported to deeper layers (6-8 cm below the surface) in the sediment under bioturbation. This study elucidates the mechanisms of microplastic transport, showing that clam behaviors such as burrowing, movement, and ingestion contribute to this process. The results suggest that a biologically based management strategy may be a more environmentally friendly means of mitigating microplastic pollution in seawater.
Collapse
Affiliation(s)
- Kangning Zhang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shan Zheng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chenhao Zhao
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Liang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiaoxia Sun
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Uguen M, Gaudron SM, Seuront L. Plastic pollution and marine mussels: Unravelling disparities in research efforts, biological effects and influences of global warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178078. [PMID: 39709840 DOI: 10.1016/j.scitotenv.2024.178078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
The ever-growing contamination of the environment by plastics is a major scientific and societal concern. Specifically, the study of microplastics (1 μm to 5 mm), nanoplastics (< 1 μm), and their leachates is a critical research area as they have the potential to cause detrimental effects, especially when they impact key ecological species. Marine mussels, as ecosystem engineers and filter feeders, are particularly vulnerable to this type of pollution. In this study, we reviewed the 106 articles that focus on the impacts of plastic pollution on marine mussels. First, we examined the research efforts in terms of plastic characteristics (size, polymer, shape, and leachates) and exposure conditions (concentration, duration, species, life stages, and internal factors), their disparities, and their environmental relevance. Then, we provided an overview of the effects of plastics on mussels at each organisational levels, from the smaller scales (molecular, cellular, tissue and organ impacts) to the organism level (functional, physiological, and behavioural impacts) as well as larger-scale implications (associated community impacts). We finally discussed the limited research available on multi-stressor studies involving plastics, particularly in relation to temperature stress. We identified temperature as an underestimated factor that could shape the impacts of plastics, and proposed a roadmap for future research to address their combined effects. This review also highlights the impact of plastic pollution on mussels at multiple levels and emphasises the strong disparities in research effort and the need for more holistic research, notably through the consideration of multiple stressors, with a specific focus on temperature which is likely to become an increasingly relevant forcing factor in an era of global warming. By identifying critical gaps in current knowledge, we advocate for more coordinated interdisciplinary and international collaborations and raise awareness of the need for environmental coherence in the choice and implementation of experimental protocols.
Collapse
Affiliation(s)
- Marine Uguen
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France.
| | - Sylvie M Gaudron
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Sorbonne Université, UFR 927, F-75005 Paris, France
| | - Laurent Seuront
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
3
|
Ali W, Jeong H, Kim DH, Lee JS, Zinck P, Souissi S, Lee JS. Adverse effects of environmentally relevant microplastics on in vivo endpoints, oxidative stress, and mitogen-activated protein kinase signaling pathway and multixenobiotic resistance system in the marine rotifer Brachionus plicatilis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178027. [PMID: 39700983 DOI: 10.1016/j.scitotenv.2024.178027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
This study compared the toxicological effects of environmentally relevant microplastics (MPs) on the marine rotifer Brachionus plicatilis, focusing on MPs derived from various sources, including fossil fuel-based low-density polyethylene, bio-based polylactic acid (PLA), biodegradable poly(butylene adipate-co-terephthalate), and a novel PLA modified with β-cyclodextrin. We assessed in vivo effects such as reproductive output and mortality, alongside in vitro oxidative stress responses, including oxidative stress, antioxidant enzyme activities, and activation of the mitogen-activated protein kinase (MAPK) signaling pathway and the multixenobiotic resistance (MXR) system. Reproductive output and lifespan reduced significantly across all MP types, ranging from 0.5 to 10 mg L-1, indicating compromised reproductive fitness and life maintenance. At an environmentally relevant concentration of 0.5 mg L-1, in vitro assessments revealed differential modulation of reactive oxygen species levels and antioxidant enzyme activities, contingent upon the specific MP type. Moreover, MAPK signaling pathway and MXR assays showed changes in phosphorylation and detoxification proteins depending on the type of MPs. This study highlights the ecological risks that various MPs, including bio-based, biodegradable, and petrochemical-based MPs, could pose in marine environments.
Collapse
Affiliation(s)
- Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Tang KHD, Zhou J. Ecotoxicity of Biodegradable Microplastics and Bio-based Microplastics: A Review of in vitro and in vivo Studies. ENVIRONMENTAL MANAGEMENT 2024:10.1007/s00267-024-02106-w. [PMID: 39730878 DOI: 10.1007/s00267-024-02106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants. Their phytotoxicity becomes more pronounced when blended with polybutylene adipate terephthalate (PBAT) MPs. Polyhydroxybutyrate (PHB) and polybutylene succinate (PBS) MPs show lower phytotoxicity than PLA MPs. At high doses, PLA and PHB MPs may cause dose-dependent developmental toxicity to aquatic organisms. Nano-PLA could induce oxidative stress and genetic damage in insects, indicating its toxicity could be size-dependent and affected by weathering. PBAT MPs have been observed to affect plant growth at lower concentrations (0.1%) than PLA MPs, while polycaprolactone (PCL) affected seed germination only at high temperatures. PCL MPs and extracts could also cause developmental and reproductive toxicity, alter metabolisms, and induce oxidative stress in aquatic organisms at high concentrations. Polypropylene carbonate (PPC) ( > 40 g/kg) MPs have caused earthworm behavioral changes. Non-biodegradable bioplastics are potentially toxic to embryos, larvae, immune systems, reproductive systems, and endocrine systems of animals. However, it is important to note that toxicity studies are still lacking for biodegradable and bio-based plastics, particularly PHB, PBS, PCL, PPC, starch-based, and non-biodegradable bioplastics. More research into the MPs of these plastics is essential to better understand their ecotoxicity and applicability.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| |
Collapse
|
5
|
Falkenberg LJ, Cornet JE, Joyce PWS. Nature-based solutions to the management of legacy plastic pollution: Filter-feeders as bioremediation tools for coastal microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177237. [PMID: 39490396 DOI: 10.1016/j.scitotenv.2024.177237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Plastics are one of the most topical pollutants occurring in our ocean. Given concern regarding the impacts of both macro- and micro-plastics on environmental and human well-being, a range of management approaches are required. Key in the management of microplastics will be curative measures that facilitate the removal of legacy plastics from the environment as, without their removal, impacts will continue for centuries. While a strong focus has been placed on technical, engineered solutions to plastic removal, many of these techniques are unsuitable for microplastics. Therefore, here we argue for the exploration of nature-based solutions to such issues. As a case study, we combine information available in the published academic literature with experimental results from a pilot study to highlight the potential for filter-feeding organisms - specifically mussels - to remove microplastics from the water column by transferring them into biodeposits. Such biodeposits have the potential to be transported to other parts of the system (i.e., benthic regions), or collected and removed from the environment. While initial results indicate that such approaches are promising for microplastic removal from water sources, there are a number of areas that still need investigation before widespread application of such an approach could be adopted. Key knowledge gaps include identification of the appropriate methods to be used and assessment of unintended consequences including potential impacts of microplastics on benthic organisms. We argue that there is a need for ongoing funding and policy support for the development and application of such nature-based solutions targeting legacy plastic pollution.
Collapse
Affiliation(s)
- Laura J Falkenberg
- Simon FS Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong.
| | - Julie E Cornet
- Simon FS Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Patrick W S Joyce
- Simon FS Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
6
|
Cao Z, Kim C, Li Z, Jung J. Comparing environmental fate and ecotoxicity of conventional and biodegradable plastics: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175735. [PMID: 39187074 DOI: 10.1016/j.scitotenv.2024.175735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Plastic pollution is a consequential problem worldwide, prompting the widespread use of biodegradable plastics (BPs). However, not all BPs are completely degradable under natural conditions, but instead produce biodegradable microplastics (BMPs), release chemical additives, and absorb micropollutants, thus causing toxicity to living organisms in similar manners to conventional plastics (CPs). The new problems caused by biodegradable plastics cannot be ignored and requires a thorough comparison of the differences between conventional and biodegradable plastics and microplastics. This review comprehensively compares their environmental fates, such as biodegradation and micropollutant sorption, and ecotoxicity in soil and water environments. The results showed that it is difficult to determine the natural conditions required for the complete biodegradation of BPs. Some chemical additives in BPs differ from those in CPs and may pose new threats to ecosystems. Because of functional group differences, most BMPs had higher micropollutant sorption capacities than conventional microplastics (CMPs). The ecotoxicity comparison showed that BMPs had similar or even greater adverse effects than CMPs. This review highlights several knowledge gaps in this new field and suggests directions for future studies.
Collapse
Affiliation(s)
- Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Zhihua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Wang D, Xiong F, Wu L, Liu Z, Xu K, Huang J, Liu J, Ding Q, Zhang J, Pu Y, Sun R. A progress update on the biological effects of biodegradable microplastics on soil and ocean environment: A perfect substitute or new threat? ENVIRONMENTAL RESEARCH 2024; 252:118960. [PMID: 38636648 DOI: 10.1016/j.envres.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.
Collapse
Affiliation(s)
- Daqin Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingjie Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhihui Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Piyathilake U, Lin C, Bolan N, Bundschuh J, Rinklebe J, Herath I. Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review. CHEMOSPHERE 2024; 355:141773. [PMID: 38548076 DOI: 10.1016/j.chemosphere.2024.141773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024]
Abstract
Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.
Collapse
Affiliation(s)
- Udara Piyathilake
- Environmental Science Division, National Institute of Fundamental Studies (NIFS), Kandy, 2000, Sri Lanka
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, 4350, QLD, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
9
|
Tao S, Li T, Li M, Yang S, Shen M, Liu H. Research advances on the toxicity of biodegradable plastics derived micro/nanoplastics in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170299. [PMID: 38272086 DOI: 10.1016/j.scitotenv.2024.170299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The detrimental effects of plastic and microplastic accumulation on ecosystems are widely recognized and indisputable. The emergence of biodegradable plastics (BPs) offers a practical solution to plastic pollution. Problematically, however, not all BPs can be fully degraded in the environment. On the contrary, the scientific community has demonstrated that BPs are more likely than conventional plastics (CPs) to degrade into micro/nanoplastics and release additives, which can have similar or even worse effects than microplastics. However, there is very limited information available on the environmental toxicity assessment of BMPs. The absence of a toxicity evaluation system and the uncertainty regarding combined toxicity with other pollutants also impede the environmental toxicity assessment of BMPs. Currently, research is focused on thoroughly exploring the toxic effects of biodegradable microplastics (BMPs). This paper reviews the pollution status of BMPs in the environment, the degradation behavior of BPs and the influencing factors. This paper comprehensively summarizes the ecotoxicological effects of BPs on ecosystems, considering animals, plants, and microorganisms in various environments such as water bodies, soil, and sediment. The focus is on distinguishing between BMPs and conventional microplastics (CMPs). In addition, the combined toxic effects of BMPs and other pollutants are also being investigated. The findings suggest that BMPs may have different or more severe impacts on ecosystems. The rougher and more intricate surface of BMPs increases the likelihood of causing mechanical damage to organisms and breaking down into smaller plastic particles, releasing additives that lead to a series of cascading negative effects on related organisms and ecosystems. In the case of knowledge gaps, future research is also proposed and anticipated to investigate the toxic effects of BMPs and their evaluation.
Collapse
Affiliation(s)
- Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Mingyu Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shengxin Yang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Hui Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
10
|
Adomako MO, Wu J, Lu Y, Adu D, Seshie VI, Yu FH. Potential synergy of microplastics and nitrogen enrichment on plant holobionts in wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170160. [PMID: 38244627 DOI: 10.1016/j.scitotenv.2024.170160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Wetland ecosystems are global hotspots for environmental contaminants, including microplastics (MPs) and nutrients such as nitrogen (N) and phosphorus (P). While MP and nutrient effects on host plants and their associated microbial communities at the individual level have been studied, their synergistic effects on a plant holobiont (i.e., a plant host plus its microbiota, such as bacteria and fungi) in wetland ecosystems are nearly unknown. As an ecological entity, plant holobionts play pivotal roles in biological nitrogen fixation, promote plant resilience and defense chemistry against pathogens, and enhance biogeochemical processes. We summarize evidence based on recent literature to elaborate on the potential synergy of MPs and nutrient enrichment on plant holobionts in wetland ecosystems. We provide a conceptual framework to explain the interplay of MPs, nutrients, and plant holobionts and discuss major pathways of MPs and nutrients into the wetland milieu. Moreover, we highlight the ecological consequences of loss of plant holobionts in wetland ecosystems and conclude with recommendations for pending questions that warrant urgent research. We found that nutrient enrichment promotes the recruitment of MPs-degraded microorganisms and accelerates microbially mediated degradation of MPs, modifying their distribution and toxicity impacts on plant holobionts in wetland ecosystems. Moreover, a loss of wetland plant holobionts via long-term MP-nutrient interactions may likely exacerbate the disruption of wetland ecosystems' capacity to offer nature-based solutions for climate change mitigation through soil organic C sequestration. In conclusion, MP and nutrient enrichment interactions represent a severe ecological risk that can disorganize plant holobionts and their taxonomic roles, leading to dysbiosis (i.e., the disintegration of a stable plant microbiome) and diminishing wetland ecosystems' integrity and multifunctionality.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jing Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Ying Lu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
11
|
Nik Mut NN, Na J, Jung J. A review on fate and ecotoxicity of biodegradable microplastics in aquatic system: Are biodegradable plastics truly safe for the environment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123399. [PMID: 38242301 DOI: 10.1016/j.envpol.2024.123399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Plastic products are extensively used worldwide, but inadequate management of plastic waste results in significant plastic pollution. Biodegradable plastic (BPs) offers an alternative to traditional plastics, however, not all BPs can fully degrade under natural conditions. Instead, they may deteriorate into biodegradable microplastic (BMPs) at a faster rate than conventional plastic, thereby posing an additional hazard to aquatic environments. This study provides a comprehensive overview of the fate of BPs in aquatic systems and their eco-toxicological effects on aquatic organisms such as algae, invertebrates, and fish. The findings highlight that BMPs have comparable or heightened effects compared to conventional microplastics (MPs) which physiochemical characteristic of the polymer itself or by the chemical leached from the polymeric matrix can affect aquatic organisms. While BPs is not a flawless solution to address plastic pollution, future research should prioritize investigating their production, environmental behavior, ecological impact, and whether BMPs inflict greater harm than conventional MPs.
Collapse
Affiliation(s)
- Nik Nurhidayu Nik Mut
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- OJEong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea.
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
12
|
Meng L, Sun X, Li Q, Zheng S, Liang J, Zhao C. Quantification of the vertical transport of microplastics by biodeposition of typical mariculture filter-feeding organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168226. [PMID: 37923264 DOI: 10.1016/j.scitotenv.2023.168226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The tremendous loss of microplastics from the sea surface and the low density of microplastics found in the water column and sediments indicate that the oceans have mechanisms capable of transporting microplastics from the surface to the seafloor. These include physicochemical processes and biological influences from marine organisms that drive the vertical migration of microplastics. Little is known, however, about the biological processes involved in the deposition of plastics in the marine environment. A considerable number of mariculture filter-feeding organisms can consume substantial amounts of suspended substances in the water column, and these organisms are ideal candidates for depositing microplastics. In this study, we analyzed microplastic abundance in typical mariculture filter feeders, i.e., ascidians (Halocynthia roretzi), oysters (Crassostrea gigas), scallops (Chlamys farreri) and clams (Ruditapes philippinarum), quantified the number and characteristics of the microplastics they deposited in situ, and further compared microplastic biodeposition rates. Microplastics were present in feces and pseudofeces and sank to form biodeposits rather than accumulating to significant levels in organisms. Microplastics were found in significantly higher numbers in the biodeposits of mariculture organisms than in the control deposits (p < 0.01). The shape and color of the microplastics in the sediments were not impacted by the presence of organisms (p > 0.05), but the deposition of <1000 μm and positive-buoyancy (less dense than seawater) microplastics was significantly increased in the biodeposits (p < 0.05). The highest microplastic biodeposition rate was found in scallops (1.14 ± 0.07 items·ind-1·d-1 or 0.5 ± 0.03 items·g-1·d-1). These results suggest that mariculture filter-feeding organisms have important biodepositional functions that influence the fate of microplastics through the transfer of microplastics from the surface to the seafloor. This study could contribute to a better understanding of the biological plastic pump mechanisms in oceans.
Collapse
Affiliation(s)
- Liujiang Meng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Sun
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingjie Li
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shan Zheng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Junhua Liang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chenhao Zhao
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
L E, Wilfred N, S K, Halder G, Haldar D, Patel AK, Singhania RR, Pandey A. Biodegradation of microplastics: Advancement in the strategic approaches towards prevention of its accumulation and harmful effects. CHEMOSPHERE 2024; 346:140661. [PMID: 37951399 DOI: 10.1016/j.chemosphere.2023.140661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Microplastics (MPs) are plastic particles in a size ranging from 1 mm to 5 mm in diameter, and are formed by the breakdown of plastics from different sources. They are emerging environmental pollutants, and pose a great threat to living organisms. Improper disposal, inadequate recycling, and excessive use of plastic led to the accumulation of MP in the environment. The degradation of MP can be done either biotically or abiotically. In view of that, this article discusses the molecular mechanisms that involve bacteria, fungi, and enzymes to degrade the MP polymers as the primary objective. As per as abiotic degradation is concerned, two different modes of MP degradation were discussed in order to justify the effectiveness of biotic degradation. Finally, this review is concluded with the challenges and future perspectives of MP biodegradation based on the existing research gaps. The main objective of this article is to provide the readers with clear insight, and ideas about the recent advancements in MP biodegradation.
Collapse
Affiliation(s)
- Emisha L
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Nishitha Wilfred
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Kavitha S
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India.
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Kyung Hee University, Kyung Hee Dae Ro 26, Seoul, 02447, Republic of Korea; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, Uttarakhand, India
| |
Collapse
|
14
|
Collins HI, Griffin TW, Holohan BA, Ward JE. Nylon microfibers develop a distinct plastisphere but have no apparent effects on the gut microbiome or gut tissue status in the blue mussel, Mytilus edulis. Environ Microbiol 2023; 25:2792-2806. [PMID: 37661930 DOI: 10.1111/1462-2920.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Ingestion of microplastics (MP) by suspension-feeding bivalves has been well-documented. However, it is unclear whether exposure to MP could damage the stomach and digestive gland (gut) of these animals, causing ramifications for organism and ecosystem health. Here, we show no apparent effects of nylon microfiber (MF) ingestion on the gut microbiome or digestive tissues of the blue mussel, Mytilus edulis. We exposed mussels to two low concentrations (50 and 100 particles/L) of either nylon MF or Spartina spp. particles (dried, ground marsh grass), ca. 250-500 μm in length, or a no particle control laboratory treatment for 21 days. Results showed that nylon MF, when aged in coarsely filtered seawater, developed a different microbial community than Spartina spp. particles and seawater, however, even after exposure to this different community, mussel gut microbial communities resisted disturbance from nylon MF. The microbial communities of experimental mussels clustered together in ordination and were similar in taxonomic composition and measures of alpha diversity. Additionally, there was no evidence of damage to gut tissues after ingestion of nylon MF or Spartina spp. Post-ingestive particle processing likely mediated a short gut retention time of these relatively large particles, contributing to the negligible treatment effects.
Collapse
Affiliation(s)
- Hannah I Collins
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Tyler W Griffin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Bridget A Holohan
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - J Evan Ward
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
15
|
Latchere O, Roman C, Métais I, Perrein-Ettajani H, Mouloud M, Georges D, Feurtet-Mazel A, Gigault J, Catrouillet C, Baudrimont M, Châtel A. Toxicity assessment of environmental MPs and NPs and polystyrene NPs on the bivalve Corbicula fluminea using a multi-marker approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109714. [PMID: 37572933 DOI: 10.1016/j.cbpc.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Small plastic particles, microplastics (MPs) and nanoplastics (NPs) represent a major threat in aquatic environments. Freshwater organisms are exposed to MPs and NPs, particularly in industrial and urban areas. The present study aimed to compare the toxicity between polystyrene NPs (PS NPs) and environmental microplastics (ENV MPs) and nanoplastics (ENV NPs) generated from macro-sized debris collected in the Garonne River on the freshwater bivalve C. fluminea. The organisms were exposed to the different plastic particles at three environmentally relevant concentrations: 0.008, 10, and 100 μg L-1 for 21 days. The biological responses of organisms were assessed using a multi-biomarker approach from the sub-individual to the individual level. The results demonstrated that: i) ENV NPs triggered more effects on detoxification processes and immune response, confirming that using manufactured NPs for laboratory exposure can lead to misleading conclusions on the risks posed by plastic particles; ii) effects of ENV MPs were less marked than ENV NPs, emphasizing the importance of testing a size continuum of plastic particles from NPs to MPs; iii) some effects were only observed for the low and/or intermediate concentrations tested, underlining the importance of using environmentally relevant concentrations. In light of these results, laboratory studies should be continued by exposing aquatic species to environmental MPs and NPs. The properties of these particles have to be characterized for a better risk assessment of environmental plastic particles.
Collapse
Affiliation(s)
- Oïhana Latchere
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France.
| | - Coraline Roman
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | - Isabelle Métais
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | | | - Mohammed Mouloud
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | - Didier Georges
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | - Agnès Feurtet-Mazel
- Université de Bordeaux, UMR EPOC 5805, Équipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Place Du Dr Peyneau, 33120 Arcachon, France
| | - Julien Gigault
- Université Laval, Département de Biologie, Pavillon Alexandre-Vachon, 1045, Av. de La Médecine, Local 2064, Québec, Québec G1V0A6, Canada; Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Charlotte Catrouillet
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France; Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - Magalie Baudrimont
- Université de Bordeaux, UMR EPOC 5805, Équipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Place Du Dr Peyneau, 33120 Arcachon, France
| | - Amélie Châtel
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France
| |
Collapse
|
16
|
Xu J, Wu G, Wang H, Ding Z, Xie J. Recent Study of Separation and Identification of Micro- and Nanoplastics for Aquatic Products. Polymers (Basel) 2023; 15:4207. [PMID: 37959888 PMCID: PMC10650332 DOI: 10.3390/polym15214207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Micro- and nanoplastics (MNPs) are polymeric compounds widely used in industry and daily life. Although contamination of aquatic products with MNPs exists, most current research on MNPs focuses on environmental, ecological, and toxicological studies, with less on food safety. Currently, the extent to which aquatic products are affected depends primarily on the physical and chemical properties of the consumed MNPs and the content of MNPs. This review presents new findings on the occurrence of MNPs in aquatic products in light of their properties, carrier effects, chemical effects, seasonality, spatiality, and differences in their location within organisms. The latest studies have been summarized for separation and identification of MNPs for aquatic products as well as their physical and chemical properties in aquatic products using fish, bivalves, and crustaceans as models from a food safety perspective. Also, the shortcomings of safety studies are reviewed, and guidance is provided for future research directions. Finally, gaps in current knowledge on MNPs are also emphasized.
Collapse
Affiliation(s)
- Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (G.W.)
| | - Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (G.W.)
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, China;
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (G.W.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (G.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
17
|
Ridall A, Asgari S, Ingels J. The role of microbe-microplastic associations in marine Nematode feeding behaviors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122308. [PMID: 37543070 DOI: 10.1016/j.envpol.2023.122308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Fauna across many taxa and trophic levels have been shown to consume microplastics (MPs) in experiments, providing evidence that supports field-based gut content assessments. Multiple explanations exist regarding why fauna consume MPs, one of which posits that microbial growth on MPs may facilitate faunal ingestion. However, laboratory assessments on the reasons why MPs are consumed remain limited. Here, we assessed if the presence of microbes on MPs altered marine nematode feeding behaviors across current and potential future concentrations of MPs in a local system. We used a microcosm experiment in which field-collected sediment was spiked with bacterially treated or untreated fluorescent plastic microbeads (1.0-5.0 μm) in concentrations of 102, 104, and 106 per microcosm, representing local and potential future concentrations of MPs. Ingestion by the dominant interstitial fauna was investigated after 0, 3, and 7 days using bright field microscopy. Nematodes were the only fauna across microcosms that consumed MPs, but this consumption was variable and there were no apparent trends across exposure time, bacterial treatment, or MP concentration. There were also no genera- or feeding-type-specific trends in the number of MPs consumed, though four of the top five nematode genera that consumed MPs were pollution-tolerant genera. Our study demonstrates that microbe-MP associations do not drive marine nematodes to eat MPs, especially at local field concentrations. While there were no trends across any of the nematode genera in our study, we recognize that unrealistic MP concentrations in other studies may provide alternative explanations for nematode consumption of MPs.
Collapse
Affiliation(s)
- Aaron Ridall
- Department of Biological Science, Florida State University, 319 Stadium Dr, Tallahassee, FL, 32306, USA; Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St Teresa, FL, 32358, USA.
| | - Sean Asgari
- Department of Biological Science, Florida State University, 319 Stadium Dr, Tallahassee, FL, 32306, USA
| | - Jeroen Ingels
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St Teresa, FL, 32358, USA
| |
Collapse
|
18
|
Malafeev KV, Apicella A, Incarnato L, Scarfato P. Understanding the Impact of Biodegradable Microplastics on Living Organisms Entering the Food Chain: A Review. Polymers (Basel) 2023; 15:3680. [PMID: 37765534 PMCID: PMC10534621 DOI: 10.3390/polym15183680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Microplastics (MPs) pollution has emerged as one of the world's most serious environmental issues, with harmful consequences for ecosystems and human health. One proposed solution to their accumulation in the environment is the replacement of nondegradable plastics with biodegradable ones. However, due to the lack of true biodegradability in some ecosystems, they also give rise to biodegradable microplastics (BioMPs) that negatively impact different ecosystems and living organisms. This review summarizes the current literature on the impact of BioMPs on some organisms-higher plants and fish-relevant to the food chain. Concerning the higher plants, the adverse effects of BioMPs on seed germination, plant biomass growth, penetration of nutrients through roots, oxidative stress, and changes in soil properties, all leading to reduced agricultural yield, have been critically discussed. Concerning fish, it emerged that BioMPs are more likely to be ingested than nonbiodegradable ones and accumulate in the animal's body, leading to impaired skeletal development, oxidative stress, and behavioral changes. Therefore, based on the reviewed pioneering literature, biodegradable plastics seem to be a new threat to environmental health rather than an effective solution to counteract MP pollution, even if serious knowledge gaps in this field highlight the need for additional rigorous investigations to understand the potential risks associated to BioMPs.
Collapse
Affiliation(s)
| | - Annalisa Apicella
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy; (K.V.M.); (L.I.); (P.S.)
| | | | | |
Collapse
|
19
|
Khanjani MH, Sharifinia M, Mohammadi AR. The impact of microplastics on bivalve mollusks: A bibliometric and scientific review. MARINE POLLUTION BULLETIN 2023; 194:115271. [PMID: 37429180 DOI: 10.1016/j.marpolbul.2023.115271] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Bivalves are important members of the ecosystem and their populations are declining globally, making them a concern for their role in ecosystem services and the fishing industry. Bivalves are excellent bioindicators of MPs pollution due to their widespread distribution, filtering capabilities, and close association with human health. Microplastics (MPs) have direct and indirect impacts on bivalves, affecting their physiology, habitat structure, food sources, and persistence of organic pollutants. This review provides an extensive overview of the impact of MPs on bivalves, covering various aspects such as their economic significance, ecological roles, and importance in biomonitoring environmental quality. The article presents the current state of knowledge on the sources and pathways of MPs in aquatic environments and their effects on bivalves. The mechanisms underlying the effects of MPs on bivalves, including ingestion, filtration activity, feeding inhibition, accumulation, bioaccumulation, and reproduction, are also discussed. Additionally, a bibliometric analysis of research on MPs in bivalves is presented, highlighting the number of papers, geographical distribution, and keyword clusters relating to MPs. Finally, the review emphasizes the importance of ongoing research and the development of mitigation strategies to reduce the negative effects of MPs pollution on bivalves and their habitats in oceans and coastal waters.
Collapse
Affiliation(s)
- Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Ali Reza Mohammadi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
| |
Collapse
|
20
|
Provenza F, Pastorino P, Anselmi S, Persiano ML, Scirocco T, De Rinaldis G, Fossi MC, Panti C, Renzi M, Specchiulli A. Chemical pollution and ecotoxicological effects of high-density polyethylene microplastics in Mytilus galloprovincialis from two Italian lagoon ecosystems. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104075. [PMID: 36736514 DOI: 10.1016/j.etap.2023.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Transitional water ecosystems have low water exchanges and can trap chemicals and microplastics (MPs). In this study, MPs, trace elements, polycyclic aromatic hydrocarbon-PHAs levels and the oxidative stress response were assessed in Mytilus galloprovincialis from two Italian lagoon ecosystems (Orbetello and Varano). In addition, the ecotoxicological effects induced by the exposure of M. galloprovincialis to high-density polyethylene-HDPE MPs were also determined. Levels of trace elements were almost always comparable among the sites, whereas MPs were found only in mussels from Orbetello. PAHs were always under the limit of quantification. Glutathione peroxidase and malondialdehyde levels were significantly higher in mussels from Varano. As regard the exposure test, it was found a significant effect of treatment, site and their interaction on mortality and biochemical biomarkers in both fed and unfed mussels. However, principal component analysis suggests similar effects of both color and nourishment condition on biochemical biomarkers. These findings warrant further investigation.
Collapse
Affiliation(s)
- Francesca Provenza
- Department of Life Science, University of Trieste, 34127 Trieste, Italy; Bioscience Research Center, 58015 Orbetello (GR), Italy
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy.
| | | | - Marco Leporatti Persiano
- Supporto tecnico-scientifico direttore dell'esecuzione sistema di gestione 2022 della laguna di Orbetello, 58015 Orbetello (GR), Italy
| | - Tommaso Scirocco
- National Research Council - Institute for Biological Resources and Marine Biotechnologies (IRBIM), 71010 Lesina, Italy
| | | | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Monia Renzi
- Department of Life Science, University of Trieste, 34127 Trieste, Italy; National Research Council - Institute for Biological Resources and Marine Biotechnologies (IRBIM), 71010 Lesina, Italy
| | - Antonietta Specchiulli
- National Research Council - Institute for Biological Resources and Marine Biotechnologies (IRBIM), 71010 Lesina, Italy
| |
Collapse
|