1
|
Deme S, Janakiraman B, Alamer A, Wayessa DI, Yitbarek T, Sidiq M. Predictors of functional status and disability among patients living with chronic kidney diseases at St Paul's hospital millennium medical college, Ethiopia: findings from a cross-sectional study. BMC Nephrol 2024; 25:343. [PMID: 39390429 PMCID: PMC11468188 DOI: 10.1186/s12882-024-03783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The rise in risk factors like obesity, hypertension, and diabetes mellitus has partly led to the increase in the number of patients affected by chronic kidney disease, affecting an estimated 843 million people, which is nearly 10% of the general population worldwide in 2017. Patients with CKD have an increased risk of functional difficulties and disability. This study aimed to assess the level of functional status and disability and its associated factors among patients with chronic kidney attending Saint Paul Hospital, Millennium Medical College, Addis Ababa, Ethiopia. METHODS An institution-based cross-sectional study was conducted with 302 enrolled study participants through systematic random sampling techniques. Face-to-face interviews and chart reviews were used to collect data using a semi-structured questionnaire adapted from works of literature. The Health Assessment Questionnaire Disability Index (HAQ-DI) was used to assess the functional status and disability of the participants. Data was entered into EPI info version 7 and exported to SPSS version 23 for analysis. Bivariate logistic regression analysis was employed with a p-value less than 0.25. Finally, those variables with a p-value less than 0.05 in multivariate analysis were taken as statistically significant. RESULTS A total of 219 (72.5%) CKD patients had moderate to severe functional limitation and disability (HAQ-Di > 0.5-3). Age > 50 years [AOR = 1.65; 95% CI (1.23, 3.15)], being at stage 2 and 3 CKD [AOR = 4.05; 95% CI (1.82, 9.21), being at stage 4 and 5 CKD [AOR = 2.47; 95% CI (1.87, 4.72)], and having MSK manifestations [AOR = 2.97; 95% CI (1.61, 5.55)] were significantly associated with functional status and disability. CONCLUSION The findings of this study suggest that CKD-associated functional disabilities are common. The advanced stage of CKD, higher age, and presence of musculoskeletal manifestations appear to be important variables predicting self-reported functional status. Healthcare professionals treating CKD shall be vigilant about the CKD-associated disability, the modifiable predictors, and interventions to limit the CKD-related disability.
Collapse
Affiliation(s)
- Sisay Deme
- Department of Physiotherapy, Faculty of Medical Sciences, Institute of Health, Jimma University, P.O. Box: 378, Jimma, Ethiopia.
| | - Balamurugan Janakiraman
- SRM College of Physiotherapy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chennai, Tamil Nadu, 603203, India.
- Madhav College of Physiotherapy, Faculty of Allied Health Sciences, Madhav University, Abu Road, Sirohi, Rajasthan, India.
| | - Abayneh Alamer
- Department of Physiotherapy, College of Medicine and Health Sciences, Bahir Dar University, P.O.Box: 79, Bahir Dar, Ethiopia
| | - Dechasa Imiru Wayessa
- Department of Physiotherapy, Faculty of Medical Sciences, Institute of Health, Jimma University, P.O. Box: 378, Jimma, Ethiopia
| | - Tesfalem Yitbarek
- Department of Physiotherapy, Faculty of Medical Sciences, Institute of Health, Jimma University, P.O. Box: 378, Jimma, Ethiopia
| | - Mohammad Sidiq
- Department of Physiotherapy, School of Allied Health Sciences, Galgotias University, Greater, Noida, 203201, India
| |
Collapse
|
2
|
López-Bueno JA, Díaz J, Padrón-Monedero A, Martín MAN, Linares C. Short-term impact of extreme temperatures, relative humidity and air pollution on emergency hospital admissions due to kidney disease and kidney-related conditions in the Greater Madrid area (Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166646. [PMID: 37652385 DOI: 10.1016/j.scitotenv.2023.166646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
While some studies report a possible association between heat waves and kidney disease and kidney-related conditions, there still is no consistent scientific consensus on the matter or on the role played by other variables, such as air pollution and relative humidity. Ecological retrospective time series study 01-01-2013 to 31-12-2018). Dependent variables: daily emergency hospitalisations due to kidney disease (KD), acute kidney injury (AKI), lithiasis (L), dysnatraemia (DY) and hypovolaemia (HPV). Independent variables: maximum and minimum daily temperature (Tmax, Tmin, °C), and daily relative humidity (RH, %). Other variables were also calculated, such as the daily temperature for risk of kidney disease (Theat, °C) and low daily hazardous relative humidity (HRH%). As variables of air pollution, we used the daily mean concentrations of PM10, PM2.5, NO2 and O3 in μg/m3. Based on these, we then calculated their daily excesses over World Health Organisation (WHO) guideline levels (hPM10, hPM2.5, hNO2 and hO3 respectively). Poisson family generalised linear models (GLMs) (link = log) were used to calculate relative risks (RRs), and attributable risks and attributable admissions. In the models, we controlled for the covariates included: seasonalities, trend, autoregressive component, day of the week, month and year. A statistically significant association was found between Theat and all the dependent variables analysed. The greatest AKI disease burden was attributable to Theat (2.2 % (1.7, 2.6) of attributable hospital admissions), followed by hNO2 (1.7 % (0.9, 3.4)) and HRH (0.8 (0.6, 1.1)). In the case of hypovolaemia and dysnatraemia, the greatest disease burden again corresponded to Theat, with 6.9 % (6.2, 7.6) and 5.7 (4.8, 6.6) of attributable hospital admissions respectively. Episodes of extreme heat exacerbate daily emergency hospital admissions due to kidney disease and kidney-related conditions; and attributable risks are likewise seen for low relative humidity and high ozone levels.
Collapse
Affiliation(s)
- J A López-Bueno
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - J Díaz
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain.
| | - A Padrón-Monedero
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - M A Navas Martín
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - C Linares
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Eckardt KU, Delgado C, Heerspink HJL, Pecoits-Filho R, Ricardo AC, Stengel B, Tonelli M, Cheung M, Jadoul M, Winkelmayer WC, Kramer H. Trends and perspectives for improving quality of chronic kidney disease care: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2023; 104:888-903. [PMID: 37245565 DOI: 10.1016/j.kint.2023.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Chronic kidney disease (CKD) affects over 850 million people globally, and the need to prevent its development and progression is urgent. During the past decade, new perspectives have arisen related to the quality and precision of care for CKD, owing to the development of new tools and interventions for CKD diagnosis and management. New biomarkers, imaging methods, artificial intelligence techniques, and approaches to organizing and delivering healthcare may help clinicians recognize CKD, determine its etiology, assess the dominant mechanisms at given time points, and identify patients at high risk for progression or related events. As opportunities to apply the concepts of precision medicine for CKD identification and management continue to be developed, an ongoing discussion of the potential implications for care delivery is required. The 2022 KDIGO Controversies Conference on Improving CKD Quality of Care: Trends and Perspectives examined and discussed best practices for improving the precision of CKD diagnosis and prognosis, managing the complications of CKD, enhancing the safety of care, and maximizing patient quality of life. Existing tools and interventions currently available for the diagnosis and treatment of CKD were identified, with discussion of current barriers to their implementation and strategies for improving the quality of care delivered for CKD. Key knowledge gaps and areas for research were also identified.
Collapse
Affiliation(s)
- Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Cynthia Delgado
- Division of Nephrology, University of California, San Francisco, San Francisco, California, USA; Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; The George Institute for Global Health, Sydney, Australia
| | - Roberto Pecoits-Filho
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA; School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba, Brazil
| | - Ana C Ricardo
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Bénédicte Stengel
- CESP, Centre de Recherche en Epidémiologie et Santé des Populations, Clinical Epidemiology Team, INSERM UMRS 1018, University Paris-Saclay, Villejuif, France
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael Cheung
- Kidney Disease: Improving Global Outcomes (KDIGO), Brussels, Belgium
| | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Holly Kramer
- Departments of Public Health Sciences and Medicine, Division of Nephrology and Hypertension, Loyola University Chicago, Maywood, Illinois, USA.
| |
Collapse
|
4
|
Liu Y, Wang D, Huang X, Liang R, Tu Z, You X, Zhou M, Chen W. Temporal trend and global burden of type 2 diabetes attributable to non-optimal temperature, 1990-2019: an analysis for the Global Burden of Disease Study 2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82686-82695. [PMID: 37328723 DOI: 10.1007/s11356-023-28225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
Exposure to hot or cold temperatures was reported to be associated with increased mortality and morbidity of type 2 diabetes, but few studies have estimated the temporal trend and global burden of type 2 diabetes attributable to non-optimal temperature. Based on the Global Burden of Disease Study 2019, we collected data on the numbers and rates of deaths and disability-adjusted life years (DALYs) of type 2 diabetes attributed to non-optimal temperature. The joinpoint regression analysis was used to estimate the temporal trends of the age-standardized rate of mortality and DALYs from 1990 to 2019 by average annual percentage change (AAPC). From 1990 to 2019, globally, the numbers of deaths and DALYs of type 2 diabetes attributable to non-optimal temperature increased by 136.13% (95% (uncertainty interval) UI: 87.04% to 277.76%) and 122.26% (95% UI: 68.77% to 275.59%), with the number from 0.05 (95% UI: 0.02 to 0.07) million and 0.96 (95% UI: 0.37 to 1.51) million in 1990 to 0. 11 (95% UI: 0.07 to 0.15) million and 2.14 (95% UI: 1.35 to 3.13) million in 2019. The age-standardized mortality rate (ASMR) and DALYs rate (ASDR) of type 2 diabetes attributable to non-optimal temperature showed an increasing trend in the high temperature effect and lower (low, low-middle and middle) socio-demographic index (SDI) region, with AAPCs of 3.17%, 1.24%, 1.61%, and 0.79% (all P < 0.05), respectively. The greatest increased ASMR and ASDR were observed in Central Asia, followed by Western Sub-Saharan Africa and South Asia. Meanwhile, the contribution of type 2 diabetes burden attributable to high temperature gradually increased globally and in five SDI regions. In addition, the global age-specific rate of mortality and DALYs of type 2 diabetes attributable to non-optimal temperature for both men and women almost increased with age in 2019. The global burden of type 2 diabetes attributable to non-optimal temperature increased from 1990 to 2019, particularly in high temperature, regions with lower SDI, and the older population. Appropriate temperature interventions are necessary to curb climate change and increasing diabetes.
Collapse
Affiliation(s)
- Yang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xuezan Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhouzheng Tu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaojie You
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Ratter-Rieck JM, Roden M, Herder C. Diabetes and climate change: current evidence and implications for people with diabetes, clinicians and policy stakeholders. Diabetologia 2023; 66:1003-1015. [PMID: 36964771 PMCID: PMC10039694 DOI: 10.1007/s00125-023-05901-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023]
Abstract
Climate change will be a major challenge for the world's health systems in the coming decades. Elevated temperatures and increasing frequencies of heat waves, wildfires, heavy precipitation and other weather extremes can affect health in many ways, especially if chronic diseases are already present. Impaired responses to heat stress, including compromised vasodilation and sweating, diabetes-related comorbidities, insulin resistance and chronic low-grade inflammation make people with diabetes particularly vulnerable to environmental risk factors, such as extreme weather events and air pollution. Additionally, multiple pathogens show an increased rate of transmission under conditions of climate change and people with diabetes have an altered immune system, which increases the risk for a worse course of infectious diseases. In this review, we summarise recent studies on the impact of climate-change-associated risk for people with diabetes and discuss which individuals may be specifically prone to these risk conditions due to their clinical features. Knowledge of such high-risk groups will help to develop and implement tailored prevention and management strategies to mitigate the detrimental effect of climate change on the health of people with diabetes.
Collapse
Affiliation(s)
- Jacqueline M Ratter-Rieck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Bai J, Cui J, Shi F, Yu C. Global Epidemiological Patterns in the Burden of Main Non-Communicable Diseases, 1990-2019: Relationships With Socio-Demographic Index. Int J Public Health 2023; 68:1605502. [PMID: 36726528 PMCID: PMC9884670 DOI: 10.3389/ijph.2023.1605502] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Objectives: This study aimed to analyze spatio-temporal patterns of the global burden caused by main NCDs along the socio-economic development. Methods: We extracted relevant data from GBD 2019. The estimated annual percentage changes, quantile regression and limited cubic splines were adopted to estimate temporal trends and relationships with socio-demographic index. Results: NCDs accounted for 74.36% of global all-cause deaths in 2019. The main NCDs diseases were estimated for cardiovascular diseases, neoplasms, and chronic respiratory diseases, with deaths of 18.56 (17.08-19.72) million, 10.08 (9.41-10.66) million and 3.97 (3.58-4.30) million, respectively. The death burden of three diseases gradually decreased globally over time. Regional and sex variations existed worldwide. Besides, the death burden of CVD showed the inverted U-shaped associations with SDI, while neoplasms were positively correlated with SDI, and CRD showed the negative association. Conclusion: NCDs remain a crucial public health issue worldwide, though several favorable trends of CVD, neoplasms and CRD were observed. Regional and sex disparities still existed. Public health managers should execute more targeted programs to lessen NCDs burden, predominantly among lower SDI countries.
Collapse
Affiliation(s)
- Jianjun Bai
- School of Public Health, Wuhan University, Wuhan, China
| | - Jiaxin Cui
- School of Nursing, Wuhan University, Wuhan, China
| | - Fang Shi
- School of Public Health, Wuhan University, Wuhan, China
| | - Chuanhua Yu
- School of Public Health, Wuhan University, Wuhan, China,*Correspondence: Chuanhua Yu,
| |
Collapse
|