1
|
Huang M, Zhao L, Wang Z, Sun X, Shang Q, Li Y, Li M, Geng H, Hu S, Yang Y. Effect of plant species on wastewater treatment performance of a subsurface vertical-flow constructed wetland with step-feeding at low temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122546. [PMID: 39299120 DOI: 10.1016/j.jenvman.2024.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
To improve the treatment performance of constructed wetlands under low-temperature conditions, this study investigated the effects of plant species on wastewater treatment performance at low temperature and the associated microbiological characteristics in a subsurface vertical-flow constructed wetland (VFCW) with step-feeding. The results showed that the redox microenvironment in the VFCW filter with step-feeding could be restored and optimized by planting appropriate species that can tolerate low temperature, ensuring a high nitrification performance for the system. Correspondingly, the abundance and activity of three functional microbes (namely nitrifiers, denitrifiers, and anammox bacteria) increased to different degrees in the system, eventually ensuring ideal nitrogen removal by the VFCW. Compared with the VFCW planted with Phragmites australis and Acorus gramineus, the operation performance of the VFCW planted with Iris wilsonii could be recovered at low temperature, and its chemical oxygen demand, total phosphorus, total nitrogen, and ammonium nitrate removal rates could respectively reach 95.7%, 99.2%, 93.0%, and 94.4%, respectively. Moreover, nitrogen removal in the system relied on the nitrification/denitrification and partial denitrification - anaerobic ammonium oxidation processes. Nitrosomonas, Nitrospira, Thauera, and Candidatus Brocadia were the four dominant bacterial genera in the filter layer.
Collapse
Affiliation(s)
- Menglu Huang
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Zhen Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Ximing Sun
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Qiongqiong Shang
- Nanchang Hangkong University, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, China.
| | - Yihan Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Mengxiao Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Siyu Hu
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Kulshreshtha NM, Chauhan K, Singh A, Soti A, Kumari M, Gupta AB. Intertwining of the C-N-S cycle in passive and aerated constructed wetlands. World J Microbiol Biotechnol 2024; 40:301. [PMID: 39136809 DOI: 10.1007/s11274-024-04102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 10/17/2024]
Abstract
The microbial processes occurring in constructed wetlands (CWs) are difficult to understand owing to the complex interactions occurring between a variety of substrates, microorganisms, and plants under the given physicochemical conditions. This frequently leads to very large unexplained nitrogen losses in these systems. In continuation of our findings on Anammox contributions, our research on full-scale field CWs has suggested the significant involvement of the sulfur cycle in the conventional C-N cycle occurring in wetlands, which might closely explain the nitrogen losses in these systems. This paper explored the possibility of the sulfur-driven autotrophic denitrification (SDAD) pathway in different types of CWs, shallow and deep and passive and aerated systems, by analyzing the metagenomic bacterial communities present within these CWs. The results indicate a higher abundance of SDAD bacteria (Paracoccus and Arcobacter) in deep passive systems compared to shallow systems and presence of a large number of SDAD genera (Paracoccus, Thiobacillus, Beggiatoa, Sulfurimonas, Arcobacter, and Sulfuricurvum) in aerated CWs. The bacteria belonging to the functional category of dark oxidation of sulfur compounds were found to be enriched in deep and aerated CWs hinting at the possible role of the SDAD pathway in total nitrogen removal in these systems. As a case study, the percentage nitrogen removal through SDAD pathway was calculated to be 15-20% in aerated wetlands. The presence of autotrophic pathways for nitrogen removal can prove highly beneficial in terms of reducing sludge generation and hence reducing clogging, making aerated CWs a sustainable wastewater treatment solution.
Collapse
Affiliation(s)
- Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India
- Dr. B. Lal Institute of Biotechnology, 6E-Malaviya Industrial Area, Jaipur, 302017, India
| | - Karishma Chauhan
- Department of Civil Engineering, Manipal University, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, 303007, India
| | - Abhyudaya Singh
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India
| | - Abhishek Soti
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India
- Bluedrop Enviro Private Limited, 101, Vasantha Golden Residency Plot No-521 and 536, Phillu Street, Raja Rajeswari Nagar, Kondapur, Telangana, 500084, India
| | - Meena Kumari
- Dr. B. Lal Institute of Biotechnology, 6E-Malaviya Industrial Area, Jaipur, 302017, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India.
| |
Collapse
|
3
|
Guo B, Li G, Xu H, Fang Y, Gao Z, Zhao Y, Zhang J. Enhanced denitrification performance in iron-carbon wetlands through biomass addition: Impact on nitrate and ammonia transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169913. [PMID: 38185167 DOI: 10.1016/j.scitotenv.2024.169913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
This study investigated the influence of biomass addition on the denitrification performance of iron-carbon wetlands. During long-time operation, the effluent NO3--N concentration of CW-BFe was observed to be the lowest, registering at 0.418 ± 0.167 mg/L, outperforming that of CW-Fe, which recorded 1.467 ± 0.467 mg/L. However, the effluent NH4+-N for CW-BFe increased to 1.465 ± 0.121 mg/L, surpassing CW-Fe's 0.889 ± 0.224 mg/L. Within a typical cycle, when establishing first-order reaction kinetics based on NO3--N concentrations, the introduction of biomass was found to amplify the kinetic constants across various stages in the iron-carbon wetland, ranging between 2.4 and 5.4 times that of CW-Fe. A metagenomic analysis indicated that biomass augments the reduction of NO3--N and NO2--N nitrogen and significantly bolsters the dissimilation nitrate reduction to ammonia pathway. Conversely, it impedes the reduction of N2O, leading to a heightened proportion of 2.715 % in CW-BFe's nitrogen mass balance, a stark contrast to CW-Fe's 0.379 %.
Collapse
Affiliation(s)
- Baolei Guo
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Guoqiang Li
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China.
| | - Hongbin Xu
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China.
| | - Yingke Fang
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Zhao Gao
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Yuxin Zhao
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Jingyi Zhang
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| |
Collapse
|
4
|
Niu S, Xie J, Wang G, Li Z, Zhang K, Li H, Xia Y, Tian J, Yu E, Xie W, Gong W. Community assembly patterns and processes of bacteria in a field-scale aquaculture wastewater treatment system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167913. [PMID: 37858824 DOI: 10.1016/j.scitotenv.2023.167913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Microbial communities are responsible for the biological treatment of wastewater, however, our comprehension of their diversity, assembly patterns, and functions remains limited. In this study, we analyzed bacterial communities in both water and sediment samples. These samples were gathered from a novel field-scale aquaculture wastewater treatment system (FAWTS), which employs a multi-stage purification process to eliminate nutrients from pond culture wastewater. Significant variations were observed in bacterial diversity and composition across various ponds within the system and at different stages of the culture. Notably, the bacterial community in the FAWTS displayed a distinct species abundance distribution. The influence of dispersal-driven processes on shaping FAWTS communities was found to be relatively weak. The utilization of neutral and null models unveiled that the assembly of microbial communities was primarily governed by stochastic processes. Moreover, environmental factors variables such as total nitrogen (TN), dissolved oxygen (DO), and temperature were found to be associated with both the composition and assembly of bacterial communities, influencing the relative significance of stochastic processes. Furthermore, we discovered a close relationship between that bacterial community composition and system functionality. These findings hold significant implications for microbial ecologists and environmental engineers, as they can collaboratively refine operational strategies while preserving biodiversity. This, in turn, promotes the stability and efficiency of the FAWTS. In summary, our study contributes to an enhanced mechanistic understanding of microbial community diversity, assembly patterns, and functionality within the FAWTS, offering valuable insights into both microbial ecology and wastewater treatment processes.
Collapse
Affiliation(s)
- Shuhui Niu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong 510380, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong 510380, China; Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, Hainan 572000, China
| | - Guangjun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong 510380, China; Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, Hainan 572000, China
| | - Zhifei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong 510380, China; Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, Hainan 572000, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong 510380, China; Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, Hainan 572000, China
| | - Hongyan Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong 510380, China; Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, Hainan 572000, China
| | - Yun Xia
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong 510380, China; Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, Hainan 572000, China
| | - Jingjing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong 510380, China; Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, Hainan 572000, China
| | - Ermeng Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong 510380, China; Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, Hainan 572000, China
| | - Wenping Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong 510380, China; Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, Hainan 572000, China
| | - Wangbao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong 510380, China; Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, Hainan 572000, China.
| |
Collapse
|