1
|
Mu M, Li D, Lin S, Bi H, Liu X, Wang Z, Qian C, Ji J. Insights into the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox: Nitrogen removal performance, enzyme activity and microbial community. CHEMOSPHERE 2024; 365:143308. [PMID: 39265735 DOI: 10.1016/j.chemosphere.2024.143308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient and economical nitrogen removal process for treating ammonium-rich industrial wastewaters. However, Cu(Ⅱ) and Ni(Ⅱ) present in industrial wastewaters are toxic to anaerobic ammonium-oxidizing bacteria (AnAOB). Unfortunately, the effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox have not been thoroughly investigated, especially when Cu(Ⅱ) and Ni(Ⅱ) coexist. This work comprehensively investigated the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox and revealed the inhibitory mechanisms. With the influent NH4+-N and NO2--N concentration of 230 and 250 mg L-1, the inhibition thresholds on anammox are 2.00 mg L-1 Cu(Ⅱ), 1.00 mg L-1 Ni(Ⅱ) and 1.00 mg L-1 Cu(Ⅱ) + 1.00 mg L-1 Ni(Ⅱ), and higher Cu(Ⅱ) or Ni(Ⅱ) concentrations resulted in sharp deteriorations of nitrogen removal performance. The inhibition of Ni(Ⅱ) on anammox was mainly attributed to the adverse effect on NiR activity, while the inhibition mechanism of Cu(Ⅱ) seemed to be unrelated to the four functional enzymes, but associated with disruption of cellular and organellar membranes. The behavior of extracellular polymeric substances (EPS) contributed to the antagonistic effect between Cu(Ⅱ) and Ni(Ⅱ) on anammox. In addition, the niche of Candidatus Brocadia and Candidatus Jettenia shifted under the Cu(II) and Ni(II) stress, and Candidatus Jettenia displayed greater tolerance to Cu(II) and Ni(II) stress. In conclusion, this research clarified the combined effect and the inhibitory mechanism of multiple heavy metals on anammox, and provide the guidances for anammox process application in treating high-ammonium industrial wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Minghao Mu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Dengzhi Li
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Shilin Lin
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haisong Bi
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Xinqiang Liu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Zheng Wang
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Chengduo Qian
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Wang P, Lu B, Chai X. The adaptive regulation mechanism of Anammox granule sludge under calcium ions stress: Defense modes transformation. WATER RESEARCH 2024; 263:122093. [PMID: 39096809 DOI: 10.1016/j.watres.2024.122093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/31/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Anammox granular sludge (AnGS) has received considerable attention due to its low carbon footprint (less aeration energy and carbon source consumption) and high biomass density, but growth rate and stability are still the bottlenecks of AnGS process. Calcium ion (Ca2+) is essential for the growth of anaerobic ammonium oxidation bacteria (AnAOB) and plays an important role in the formation and stability of AnGS. Response of AnGS to Ca2+ under different concentrations was comprehensively investigated by multi-spectral and metagenomics analysis in four aspects: nitrogen removal performance, surface morphology, extracellular polymeric substance (EPS) composition and characterization, and microbial community. The nitrogen removal efficiency was significantly enhanced at appropriate Ca2+ concentration (2 mmol/L), owning to the more favorable morphology and functional microbial composition of AnGS. However, the nitrogen removal performance of AnGS declined with the Ca2+concentration increased from 2 to 8 mmol/L, due to the negative effects of excess Ca2+on EPS, mass transfer efficiency, and functional microorganisms. Meanwhile, an unexpected slight "rebound" of nitrogen removal efficiency was observed at Ca2+ = 6 mmol/L and attributed to the defense mode transformation of AnGS (from "ion stabilization" to "precipitate shield" modes) against excess Ca2+ stress. Based on the findings, the response mechanism of AnGS to Ca2+ with different concentrations was established. Our results enhanced the understanding of the interaction between AnGS and Ca2+, which may be valuable for filling the theoretical gap in enhancing the granulation and stability of AnGS and providing a reference for the practical operation of the AnGS process.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Zhang X, Lu H, Liu J, Tadiyose B, Wan H, Zhong Z, Deng Y, Chi G, Zhao H. Mechanism of tartaric acid mediated dissipation and biotransformation of tetrabromobisphenol A and its derivatives in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134350. [PMID: 38643580 DOI: 10.1016/j.jhazmat.2024.134350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Biotransformation is a major dissipation process of tetrabromobisphenol A and its derivatives (TBBPAs) in soil. The biotransformation and ultimate environmental fate of TBBPAs have been widely studied, yet the effect of root exudates (especially low-molecular weight organic acids (LMWOAs)) on the fate of TBBPAs is poorly documented. Herein, the biotransformation behavior and mechanism of TBBPAs in bacteriome driven by LMWOAs were comprehensively investigated. Tartaric acid (TTA) was found to be the main component of LMWOAs in root exudates of Helianthus annus in the presence of TBBPAs, and was identified to play a key role in driving shaping bacteriome. TTA promoted shift of the dominant genus in soil bacteriome from Saccharibacteria_genera_incertae_sedis to Gemmatimonas, with a noteworthy increase of 24.90-34.65% in relative abundance of Gemmatimonas. A total of 28 conversion products were successfully identified, and β-scission was the principal biotransformation pathway for TBBPAs. TTA facilitated the emergence of novel conversion products, including 2,4-dibromophenol, 3,5-dibromo-4-hydroxyacetophenone, para-hydroxyacetophenone, and tribromobisphenol A. These products were formed via oxidative skeletal cleavage and debromination pathways. Additionally, bisphenol A was observed during the conversion of derivatives. This study provides a comprehensive understanding about biotransformation of TBBPAs driven by TTA in soil bacteriome, offering new insights into LMWOAs-driven biotransformation mechanisms.
Collapse
Affiliation(s)
- Xiaonuo Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bekele Tadiyose
- Department of Biology, Eastern Nazarene College, MA 02170, USA
| | - Huihui Wan
- Instrumental Analysis Center, Dalian University of Technology, 116024 Dalian, China
| | - Zhihui Zhong
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Yaxi Deng
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Goujian Chi
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China.
| |
Collapse
|
4
|
Yin W, Li Y, Xu W, Bao Y, Zhu J, Su X, Han J, Chen C, Lin H, Sun F. Unveiling long-term combined effect of salinity and Lead(II) on anammox activity and microbial community dynamics in saline wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 402:130767. [PMID: 38692373 DOI: 10.1016/j.biortech.2024.130767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
The study assessed the effect of salinity and lead (Pb(II)) on the anammox sludge for nitrogen removal from saline wastewater. Results showed decreased nitrogen removal and specific anammox activity (SAA) with elevated salinity and Pb(II). SAA reduced from 541.3 ± 4.3 mg N g-1 VSS d-1 at 0.5 mg/L Pb(II) to 436.0 ± 0.2 mg N g-1 VSS d-1 at 30 g/L NaCl, further to 303.6 ± 7.1 mg N g-1 VSS d-1 under 30 g/L NaCl + 0.5 mg/L Pb(II). Notably, the combined inhibition at salinity (15-20 g/L NaCl) and Pb(II) (0.3-0.4 mg/L) exhibited synergistic effect, while higher salinity and Pb(II) aligned with independent inhibition models. Combined inhibition decreased protein/polysaccharides ratio, indicating more severe negative effect on anammox aggregation capacity. Metagenomics confirmed decreased Candidatus Kuenenia, and enhanced denitrification under elevated salinity and Pb(II) conditions. This study offers insights into anammox operation for treating saline wastewater with heavy metals.
Collapse
Affiliation(s)
- Wenjun Yin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yilin Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yibin Bao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Junjie Zhu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jie Han
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
5
|
Zhang M, Jiao T, Chen S, Zhou W. A review of microbial nitrogen transformations and microbiome engineering for biological nitrogen removal under salinity stress. CHEMOSPHERE 2023; 341:139949. [PMID: 37648161 DOI: 10.1016/j.chemosphere.2023.139949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
The osmotic stress caused by salinity exerts severe inhibition on the process of biological nitrogen removal (BNR), leading to the deterioration of biosystems and the discharge of nitrogen with saline wastewater. Feasible strategies to solve the bottleneck in saline wastewater treatment have attracted great attention, but relevant studies to improve nitrogen transformations and enhance the salt-tolerance of biosystems in terms of microbiome engineering have not been systematically reviewed and discussed. This work attempted to provide a more comprehensive explanation of both BNR and microbiome engineering approaches for saline wastewater treatment. The effect of salinity on conventional BNR pathways, nitrification-denitrification and anammox, was summarized at cellular and metabolic levels, including the nitrogen metabolic pathways, the functional microorganisms, and the inhibition threshold of salinity. Promising nitrogen transformations, such as heterotrophic nitrification-aerobic denitrification, ammonium assimilation and the coupling of conventional pathways, were introduced and compared based on advantages and challenges in detail. Strategies to improve the salt tolerance of biosystems were proposed and evaluated from the perspective of microbiome engineering. Finally, prospects of future investigation and applications on halophilic microbiomes in saline wastewater treatment were discussed.
Collapse
Affiliation(s)
- Mengru Zhang
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China
| | - Tong Jiao
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China
| | - Shigeng Chen
- Shandong Nongda Fertilizer Sci.&Tech. Co., Ltd., Taian, Shandong, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, 250061 Jinan, China; Laboratory of Water-Sediment Regulation and Eco-decontamination, 250061, Jinan, China.
| |
Collapse
|
6
|
Liang E, Xu L, Su J, Yang Y, Liu Y. Nano iron tetroxide-modified rice husk biochar promoted Feammox performance of Klebsiella sp. FC61 and synergistically removed Ni 2+ and ciprofloxacin. BIORESOURCE TECHNOLOGY 2023; 382:129183. [PMID: 37210034 DOI: 10.1016/j.biortech.2023.129183] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
The iron reduction coupled with ammonia oxidation process (Feammox) is a biological reaction process associated with the nitrogen cycle that has been discovered in recent years. In this study, the iron-reducing bacterium Klebsiella sp. FC61 was attached by synthesizing nano-loadings of iron tetroxide (nFe3O4) onto rice husk biochar (RBC), and the RBC-nFe3O4 was used as an electron shuttle to participate in the biological iron reduction process of soluble and insoluble Fe3+ to improve the ammonia oxidation efficiency to 81.82%. This acceleration of electron transfer increased the carbon consumption rate and further tuned up the COD removal efficiency to 98.00%. The Feammox could be coupled with iron denitrification for internal nitrogen/iron cycling to reduce the accumulation of nitrate by-products and achieve the recycling of iron. In addition, pollutants such as Ni2+, ciprofloxacin, and formed chelates could be removed by pore adsorption and π-π interactions using bio-iron precipitates produced by iron-reducing bacteria.
Collapse
Affiliation(s)
- Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
7
|
Yang J, Chen Z, Wang X, Zhang Y, Li J, Zhou S. Elucidating nitrogen removal performance and response mechanisms of anammox under heavy metal stress using big data analysis and machine learning. BIORESOURCE TECHNOLOGY 2023; 382:129143. [PMID: 37169206 DOI: 10.1016/j.biortech.2023.129143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
In this study, machine learning algorithms and big data analysis were used to decipher the nitrogen removal rate (NRR) and response mechanisms of anammox process under heavy metal stresses. Spearman algorithm and Statistical analysis revealed that Cr6+ had the strongest inhibitory effect on NRR compared to other heavy metals. The established machine learning model (extreme gradient boost) accurately predicted NRR with an accuracy greater than 99%, and the prediction error for new data points was mostly less than 20%. Additionally, the findings of feature analysis demonstrated that Cu2+ and Fe3+ had the strongest effect on the anammox process, respectively. According to the new insights from this study, Cr6+ and Cu2+ should be removed preferentially in anammox processes under heavy metal stress. This study revealed the feasible application of machine learning and big data analysis for NRR prediction of anammox process under heavy metal stress.
Collapse
Affiliation(s)
- Junfeng Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China; Hua An Biotech Co., Ltd., Foshan 528300, China.
| | - Yu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Jiayi Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | | |
Collapse
|
8
|
Tang L, Su C, Wang Q, Cao L, Xian Y, Wen S, Zhou Y, Gao S. Use of iron-loaded biochar to alleviate anammox performance inhibition under PFOA stress conditions: Integrated analysis of sludge characteristics and metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161178. [PMID: 36581267 DOI: 10.1016/j.scitotenv.2022.161178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The negative effects of perfluorooctanoic acid (PFOA) on biological nitrogen removal performance in wastewater treatment plants, are receiving increasing attention due to the widespread reporting of this issue. In this study, pomelo peel iron-loaded biochar (Fe-PBC) was added to an anammox bioreactor to alleviate the negative effects of PFOA. Results showed that the addition of Fe-PBC increased the ammonia and nitrite removal efficiencies from 77.7 ± 9.6 % and 79.5 ± 5.6 % to 94.45 ± 5.1 % and 95.9 ± 5.0 %, respectively. In addition, Fe-PBC promoted the removal of PFOA from wastewater, increasing the PFOA removal efficiency from 5.2 % to 29.2 ± 4.3 % from 100 to 200 days. The introduction of iron-loaded biochar into the anammox bioreactor increased the CO ratio by 13.64 % by 150 days. In addition, a CO fitting peak was detected in the Fe-PBC, indicating that the Fe-PBC was loaded with microorganisms. Microbial community analysis showed a decrease in the relative abundances of Proteobacteria and Nitrospirae from 31 % and 3.4 % to 16.8 % and 0.9 %, respectively, while the relative abundance of Planctomycetes increased from 26.8 % to 44.1 %. Metagenomic analysis found that the functional genes hzsB and hdh increased from 98,666 ± 11,400 and 3190 ± 460 to 119,333 ± 15,534 and 138,650 ± 11,233 copy numbers/MLSS. The increase in anammox biomass may be attributed to the presence of iron, an essential element for the synthesis of key anammox enzyme. Furthermore, iron was also associated with the enhanced extracellular electron transfer in the anammox system induced by Fe-PBC.
Collapse
Affiliation(s)
- Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Qing Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Linlin Cao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shitong Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shu Gao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|