1
|
Zhang M, Cui J, Mi M, Jin Z, Wong MH, Shan S, Ping L. Persistent effects of swine manure biochar and biogas slurry application on soil nitrogen content and quality of lotus root. FRONTIERS IN PLANT SCIENCE 2024; 15:1359911. [PMID: 38501139 PMCID: PMC10944939 DOI: 10.3389/fpls.2024.1359911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
Using swine manure biochar and biogas slurry in agriculture proves to be an effective strategy for soil improvement and fertilization. In this study, a pot trial on the growth of lotus root was conducted to investigate the persistent effects of applying 350°C swine manure biochar (1% and 2%) and biogas slurry (50% and 100%) on soil nitrogen nutrient and lotus root quality. The results showed that compared to chemical fertilizer alone (A0B0), swine manure biochar significantly increased soil nitrogen content after one year of application. The contents of total nitrogen (TN), alkali-hydrolyzed nitrogen (AHN), ammonium nitrogen (NH4 +-N), and nitrate nitrogen (N O 3 - - N ) increased by 17.96% to 20.73%, 14.05% to 64.71%, 17.76% to 48.68% and 2.22% to 8.47%, respectively, during the rooting period. When swine manure biochar was present, the application of biogas slurry further elevated soil nitrogen content. The co-application of swine manure biochar and biogas slurry significantly increased soil nitrogen content, and the 100% nitrogen replacement with biogas slurry combined with 2% swine manure biochar (A2B2) treatment exhibited the most significant enhancement effect during whole plant growth periods. Soil enzyme activities, including soil protease (NPT), leucine aminopeptidase (LAP), b-glucosidase (β-GC) and dehydrogenase (DHA), showed a tendency to increase and then decrease with the prolongation of lotus root fertility period, reaching the maximum value during the rooting period. Compared to A0B0, the treatment with 2% swine manure biochar had the most significant effect on enzyme activities and increased the lotus root's protein, soluble sugar, and starch contents. Nitrate content decreased with the application of 2% swine manure biochar as the amount of biogas slurry increased. In conclusion, swine manure biochar effectively improved soil nitrogen content, enzyme activity, and lotus root quality. Even after one year of application, 2% swine manure biochar had the best enhancement effect.
Collapse
Affiliation(s)
- Mengyu Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jiatao Cui
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Meng Mi
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zewen Jin
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ming Hung Wong
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
- Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lifeng Ping
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
2
|
Sultan H, Li Y, Ahmed W, Yixue M, Shah A, Faizan M, Ahmad A, Abbas HMM, Nie L, Khan MN. Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120448. [PMID: 38422850 DOI: 10.1016/j.jenvman.2024.120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Salinity stress poses a significant challenge to agriculture, impacting soil health, plant growth and contributing to greenhouse gas (GHG) emissions. In response to these intertwined challenges, the use of biochar and its nanoscale counterpart, nano-biochar, has gained increasing attention. This comprehensive review explores the heterogeneous role of biochar and nano-biochar in enhancing salt resilience in plants and soil while concurrently mitigating GHG emissions. The review discusses the effects of these amendments on soil physicochemical properties, improved water and nutrient uptake, reduced oxidative damage, enhanced growth and the alternation of soil microbial communities, enhance soil fertility and resilience. Furthermore, it examines their impact on plant growth, ion homeostasis, osmotic adjustment and plant stress tolerance, promoting plant development under salinity stress conditions. Emphasis is placed on the potential of biochar and nano-biochar to influence soil microbial activities, leading to altered emissions of GHG emissions, particularly nitrous oxide(N2O) and methane(CH4), contributing to climate change mitigation. The comprehensive synthesis of current research findings in this review provides insights into the multifunctional applications of biochar and nano-biochar, highlighting their potential to address salinity stress in agriculture and their role in sustainable soil and environmental management. Moreover, it identifies areas for further investigation, aiming to enhance our understanding of the intricate interplay between biochar, nano-biochar, soil, plants, and greenhouse gas emissions.
Collapse
Affiliation(s)
- Haider Sultan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| | - Yusheng Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mu Yixue
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Asad Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Aqeel Ahmad
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Lixiao Nie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| |
Collapse
|
3
|
Li H, Tang Y, Gao W, Pan W, Jiang C, Lee X, Cheng J. Response of soil N 2O production pathways to biochar amendment and its isotope discrimination methods. CHEMOSPHERE 2024; 350:141002. [PMID: 38145843 DOI: 10.1016/j.chemosphere.2023.141002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Reducing nitrous oxide (N2O) emission from farmland is crucial for alleviating global warming since agriculture is an important contributor of atmospheric N2O. Returning biochar to agricultural fields is an important measure to mitigate soil N2O emissions. Accurately quantifying the effect of biochar on the process of N2O production and its driving factors is critical for achieving N2O emission mitigation. Recently, stable isotope techniques such as isotope labeling, natural abundance, and site preference (SP) value, have been widely used to distinguish N2O production pathways. However, the different isotope methods have certain limitations in distinguishing N2O production in biochar-amended soils where it is difficult to identify the relative contribution of individual pathways for N2O production. This paper systematically reviews the pathways of soil N2O production (nitrification, nitrifier denitrification, bacterial denitrification, fungal denitrification, coupled nitrification-denitrification, dissimilatory nitrate reduction to ammonium and abiotic processes) and their response mechanism to the addition of biochar, as well as the development history and advantages of isotopes in differentiating N2O production pathways in biochar-amended soils. Moreover, the limitations of current research methods and future research directions are proposed. These results will help resolve how biochar affects different processes that lead to soil N2O generation and provide a scientific basis for sustainable agricultural carbon sequestration and the fulfilment of carbon neutrality goals.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Tang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou Province, China
| | - Wenjie Pan
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou Province, China
| | - Chaoying Jiang
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou Province, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China
| | - Jianzhong Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China.
| |
Collapse
|
4
|
Liu Q, Wu Y, Ma J, Jiang J, You X, Lv R, Zhou S, Pan C, Liu B, Xu Q, Xie Z. How does biochar influence soil nitrification and nitrification-induced N 2O emissions? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168530. [PMID: 37963541 DOI: 10.1016/j.scitotenv.2023.168530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
Nitrification is a major pathway of N2O production, especially in aerobic soils. The amendment of soils with biochar has been suggested as a promising solution to regulate soil N cycle and reduce N2O emissions. However, there is a lack of comprehensive and quantitative understanding of biochar impacts on soil nitrification and nitrification-induced N2O emissions. In this study, a meta-analysis was conducted using data compiled across 95 peer-reviewed studies. Results showed that biochar in general significantly increased soil nitrification rate by 56 %, with overall no significant effect on nitrification-induced N2O emissions, suggesting that biochar likely restricted the fraction of nitrified N emitted as N2O emissions. The abundance of ammonia-oxidizing bacteria (AOB) was significantly increased by 37 % following biochar addition, but that of ammonia-oxidizing archaea (AOA) did not change significantly, indicating that the impact of biochar on AOB rather than AOA may play an important role in soil nitrification. The impacts of biochar on soil nitrification processes were heterogeneous depending on soil properties. Biochar increased soil nitrification rate and AOB abundance to a larger extent in poorly pH-buffered soils such as those with acidic pH (<5), low organic carbon (<10 g kg-1), or poor texture (rich in either sand or clay), which may be attributed to the liming and structural effects of biochar that regulate soil pH and water-air status. The overall no significant effect of biochar on nitrification-induced N2O emissions was due to a positive effect in acidic soils, a negative effect in alkaline soils, and little effect in neutral soils. This study provides a comprehensive insight into how different factors mediate the response of soil nitrification processes to biochar amendment, which contributes to a new understanding of biochar function in regulating soil N2O emissions, and can assist in designing biochar projects that would benefit soil N cycle while minimizing undesirable side effects.
Collapse
Affiliation(s)
- Qi Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, No. 159, Longpan Road, Nanjing 210037, China.
| | - Yaxin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, No. 159, Longpan Road, Nanjing 210037, China
| | - Jing Ma
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, No. 19, East Wenchang Road, Jurong 212400, China.
| | - Jiang Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, No. 159, Longpan Road, Nanjing 210037, China
| | - Xinyi You
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, No. 159, Longpan Road, Nanjing 210037, China
| | - Runjin Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, No. 159, Longpan Road, Nanjing 210037, China
| | - Sijing Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, No. 159, Longpan Road, Nanjing 210037, China
| | - Chang Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, No. 159, Longpan Road, Nanjing 210037, China
| | - Benjuan Liu
- Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Qiao Xu
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang Xi Road, Yangzhou 225127, China
| | - Zubin Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71 Beijing Dong Road, Nanjing 210008, China
| |
Collapse
|
5
|
Elrys AS, Abo El-Maati MF, Dan X, Wen Y, Mou J, Abdelghany AE, Uwiragiye Y, Shuirong T, Yanzheng W, Meng L, Zhang J, Müller C. Aridity creates global thresholds in soil nitrogen retention and availability. GLOBAL CHANGE BIOLOGY 2024; 30:e17003. [PMID: 37943245 DOI: 10.1111/gcb.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
Identifying tipping points in the relationship between aridity and gross nitrogen (N) cycling rates could show critical vulnerabilities of terrestrial ecosystems to climate change. Yet, the global pattern of gross N cycling response to aridity across terrestrial ecosystems remains unknown. Here, we collected 14,144 observations from 451 15 N-labeled studies and used segmented regression to identify the global threshold responses of soil gross N cycling rates and soil process-related variables to aridity index (AI), which decreases as aridity increases. We found on a global scale that increasing aridity reduced soil gross nitrate consumption but increased soil nitrification capacity, mainly due to reduced soil microbial biomass carbon (MBC) and N (MBN) and increased soil pH. Threshold response of gross N production and retention to aridity was observed across terrestrial ecosystems. In croplands, gross nitrification and extractable nitrate were inhibited with increasing aridity below the threshold AI ~0.8-0.9 due to inhibited ammonia-oxidizing archaea and bacteria, while the opposite was favored above this threshold. In grasslands, gross N mineralization and immobilization decreased with increasing aridity below the threshold AI ~0.5 due to decreased MBN, but the opposite was true above this threshold. In forests, increased aridity stimulated nitrate immobilization below the threshold AI ~1.0 due to increased soil C/N ratio, but inhibited ammonium immobilization above the threshold AI ~1.3 due to decreased soil total N and increased MBC/MBN ratio. Soil dissimilatory nitrate reduction to ammonium decreased with increasing aridity globally and in forests when the threshold AI ~1.4 was passed. Overall, we suggest that any projected increase in aridity in response to climate change is likely to reduce plant N availability in arid regions while enhancing it in humid regions, affecting the provision of ecosystem services and functions.
Collapse
Affiliation(s)
- Ahmed S Elrys
- College of Tropical Crops, Hainan University, Haikou, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - Mohamed F Abo El-Maati
- Agriculture Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Xiaoqian Dan
- College of Tropical Crops, Hainan University, Haikou, China
| | - YuHong Wen
- College of Tropical Crops, Hainan University, Haikou, China
| | - Jinxia Mou
- College of Tropical Crops, Hainan University, Haikou, China
| | - Ahmed Elsayed Abdelghany
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid, Areas of Ministry of Education, Northwest A&F University, Yangling, China
- Water Relation and Field Irrigation Department, Agriculture and Biological Institute, National Research Centre, Cairo, Egypt
| | - Yves Uwiragiye
- Department of Agriculture, Faculty of Agriculture, Environmental Management and Renewable Energy, University of Technology and Arts of Byumba, Byumba, Rwanda
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Tang Shuirong
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wu Yanzheng
- College of Tropical Crops, Hainan University, Haikou, China
| | - Lei Meng
- College of Tropical Crops, Hainan University, Haikou, China
| | - JinBo Zhang
- College of Tropical Crops, Hainan University, Haikou, China
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- Institute of Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|