1
|
Zeng J, Desmond P, Ngo HH, Lin W, Liu X, Liu B, Li G, Ding A. Membrane modification in enhancement of virus removal: A critical review. J Environ Sci (China) 2024; 146:198-216. [PMID: 38969448 DOI: 10.1016/j.jes.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2024]
Abstract
Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance. This review focused on the membrane modifications that enhance the performance in virus removal. The characteristics of viruses and their removal by membrane filtration were briefly generalized, and membrane modifications were systematically discussed through different virus removal mechanisms, including size exclusion, hydrophilic and hydrophobic interactions, electronic interactions, and inactivation. Advanced functional materials for membrane modification were summarized based on their nature. Furthermore, it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size. The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen 52056, Germany
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Wei Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingsheng Liu
- The Second Construction Co. Ltd. of China Construction Third Engineering Bureau, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Pasha ABT, Kotlarz N, Holcomb D, Reckling S, Kays J, Bailey E, Guidry V, Christensen A, Berkowitz S, Engel LS, de Los Reyes F, Harris A. Monitoring SARS-CoV-2 RNA in wastewater from a shared septic system and sub-sewershed sites to expand COVID-19 disease surveillance. JOURNAL OF WATER AND HEALTH 2024; 22:978-992. [PMID: 38935450 DOI: 10.2166/wh.2024.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/21/2024] [Indexed: 06/29/2024]
Abstract
Wastewater-based epidemiology has expanded as a tool for collecting COVID-19 surveillance data, but there is limited information on the feasibility of this form of surveillance within decentralized wastewater systems (e.g., septic systems). This study assessed SARS-CoV-2 RNA concentrations in wastewater samples from a septic system servicing a mobile home park (66 households) and from two pumping stations serving a similarly sized (71 households) and a larger (1,000 households) neighborhood within a nearby sewershed over 35 weeks in 2020. Also, raw wastewater from a hospital in the same sewershed was sampled. The mobile home park samples had the highest detection frequency (39/39 days) and mean concentration of SARS-CoV-2 RNA (2.7 × 107 gene copies/person/day for the N1) among the four sampling sites. N1 gene and N2 gene copies were highly correlated across mobile home park samples (Pearson's r = 0.93, p < 0.0001). In the larger neighborhood, new COVID-19 cases were reported every week during the sampling period; however, we detected SARS-CoV-2 RNA in 12% of the corresponding wastewater samples. The results of this study suggest that sampling from decentralized wastewater infrastructure can be used for continuous monitoring of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- A B Tanvir Pasha
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | - Nadine Kotlarz
- Center for Human Health and the Environment, NC State, Raleigh, NC, USA
| | - David Holcomb
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stacie Reckling
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Judith Kays
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | | | - Virginia Guidry
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Ariel Christensen
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Steven Berkowitz
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Francis de Los Reyes
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | - Angela Harris
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA E-mail:
| |
Collapse
|
3
|
Kuroita T, Yoshimura A, Iwamoto R, Ando H, Okabe S, Kitajima M. Quantitative analysis of SARS-CoV-2 RNA in wastewater and evaluation of sampling frequency during the downward period of a COVID-19 wave in Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:166526. [PMID: 37647962 DOI: 10.1016/j.scitotenv.2023.166526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Wastewater-based epidemiology (WBE) is a practical approach for detecting the presence of SARS-CoV-2 infections and assessing the epidemic trend of the coronavirus disease 2019 (COVID-19). The purpose of this study was to evaluate the minimum sampling frequency required to properly identify the COVID-19 trend during the downward epidemic period when using a highly sensitive RNA detection method. WBE was conducted using the Efficient and Practical virus Identification System with ENhanced Sensitivity for Solids (EPISENS-S), a highly sensitive SARS-CoV-2 RNA detection method, at nine neighboring wastewater treatment plants (WWTPs). These WWTPs were in the same prefecture in Japan, and they had different sewer types, sampling methods, and sampling frequencies. The overall detection rate of SARS-CoV-2 RNA was 97.8 % during the entire study period when the geometric means of new COVID-19 cases per 100,000 inhabitants were between 3.3 and 7.7 in each WWTP. The maximum SARS-CoV-2 RNA concentration in wastewater was 2.14 × 104 copies/L, which corresponded to pepper mild mottle virus (PMMoV)-normalized concentrations of 6.54 × 10-3. We evaluated the effect of sampling frequencies on the probability of a significant correlation with the number of newly reported COVID-19 cases by hypothetically reducing the sampling frequency in the same dataset. When the wastewater sampling frequency occurred 5, 3, 2, and 1 times per week, these results exhibited significant correlations of 100 % (5/5), 89 % (8/9), 85 % (23/27), and 48 % (13/27), respectively. To achieve significant correlation with a high probability of over 85 %, a minimum sampling frequency of twice per week is required, even if sampling methods and sewer types are different. WBE using the EPISENS-S method and a sampling frequency of more than twice a week can be used to properly monitor COVID-19 wave epidemic trends, even during downward periods.
Collapse
Affiliation(s)
- Tomohiro Kuroita
- AdvanSentinel Inc., 3-1-8, Doshomachi, Chuo-ku, Osaka 541-0045, Japan; Shionogi & Co., Ltd., 3-1-8, Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Akimasa Yoshimura
- Shionogi & Co., Ltd., 3-1-8, Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Ryo Iwamoto
- AdvanSentinel Inc., 3-1-8, Doshomachi, Chuo-ku, Osaka 541-0045, Japan; Shionogi & Co., Ltd., 3-1-8, Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Hiroki Ando
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
4
|
Dai R, Gao H, Su R. Computer-aided drug design for virtual-screening and active-predicting of main protease (M pro) inhibitors against SARS-CoV-2. Front Pharmacol 2023; 14:1288363. [PMID: 38026989 PMCID: PMC10661973 DOI: 10.3389/fphar.2023.1288363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: SARS-CoV-2 is a novel coronavirus with highly contagious and has posed a significant threat to global public health. The main protease (Mpro) is a promising target for antiviral drugs against SARS-CoV-2. Methods: In this study, we have used pharmacophore-based drug design technology to identify potential compounds from drug databases as Mpro inhibitors. Results: The procedure involves pharmacophore modeling, validation, and pharmacophore-based virtual screening, which identifies 257 compounds with promising inhibitory activity. Discussion: Molecular docking and non-bonding interactions between the targeted protein Mpro and compounds showed that ENA482732 was the best compound. These results provided a theoretical foundation for future studies of Mpro inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| | | |
Collapse
|
5
|
Bai W, Tang R, Wu G, Wang W, Yuan S, Xiao L, Zhan X, Hu ZH. Role of suspended solids on the co-precipitation of pathogenic indicators and antibiotic resistance genes with struvite from digested swine wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132235. [PMID: 37562349 DOI: 10.1016/j.jhazmat.2023.132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Struvite recovered from wastewater contains high concentration of fecal indicator bacteria (FIB), porcine adenoviruses (PAdV) and antibiotic resistance genes (ARGs), becoming potential resources of these microbial hazards. Understanding the precipitation behavior of pathogenic indicators and ARGs with suspended solids (SS) will provide the possible strategy for the control of co-precipitation. In this study, SS was divided into high-density SS (separated by centrifugation) and low-density SS (further separated by filtration), and the role of SS on the co-precipitation of FIB, PAdV and ARGs was investigated. The distribution analysis showed that 35.5-73.0% FIB, 79.6% PAdV and 64.5-94.8% ARGs existed in high-density SS, while the corresponding values were 26.9-64.4%, 11.7% and 3.5-24.3% in low-density SS. During struvite generation, 82.7-96.9% FIB, 75.5% PAdV and 56.3-86.5% ARGs were co-precipitated into struvite. High-density SS contributed 20.7-68.5% FIB, 63.9% PAdV and 38.7-87.2% ARGs co-precipitation, and the corresponding contribution of low-density SS was 31.4-79.2%, 3.9% and 6.2-54.7%. Moreover, the precipitated SS in struvite obviously decreased inactivation efficiency of FIB and ARGs in drying process. These results provide a potential way to control the co-precipitation and inactivation of FIB, PAdV and ARGs in struvite through removing high-density SS prior to struvite recovery.
Collapse
Affiliation(s)
- Wenjing Bai
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Tang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Guangxue Wu
- Civil Engineering, College of Engineering and Informatics, University of Galway, Ireland
| | - Wei Wang
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shoujun Yuan
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, College of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, University of Galway, Ireland
| | - Zhen-Hu Hu
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
6
|
Li D, Quon H, Ervin J, Jiang S, Rosso D, Van De Werfhorst LC, Steets B, Holden PA. Modeled and measured SARS-CoV-2 virus in septic tank systems for wastewater surveillance. JOURNAL OF WATER AND HEALTH 2023; 21:1242-1256. [PMID: 37756192 PMCID: wh_2023_128 DOI: 10.2166/wh.2023.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
SARS-CoV-2 wastewater surveillance (WWS) at wastewater treatment plants (WWTPs) can reveal sewered community COVID-19 prevalence. For unsewered areas using septic tank systems (STSs) or holding tanks, how to conduct WWS remains unexplored. Here, two large STSs serving Zuma Beach (Malibu, CA) were studied. Supernatant and sludge SARS-CoV-2 concentrations from the directly-sampled STSs parameterized a dynamic solid-liquid separation, mass balance-based model for estimating the infection rate of users. Pumped septage before hauling and upon WWTP disposal was also sampled and assessed. Most (96%) STS sludge samples contained SARS-CoV-2 N1 and N2 genes, with concentrations exceeding the supernatant and increasing with depth while correlating with total suspended solids (TSS). The trucked septage contained N1 and N2 genes which decayed (coefficients: 0.09-0.29 h-1) but remained detectable. Over approximately 5 months starting in December 2020, modeled COVID-19 prevalence estimations among users ranged from 8 to 18%, mirroring a larger metropolitan area for the first 2 months. The approaches herein can inform public health intervention and augment conventional WWS in that: (1) user infection rates for communal holding tanks are estimable and (2) pumped and hauled septage can be assayed to infer where disease is spreading in unsewered areas.
Collapse
Affiliation(s)
- Dong Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93016, USA E-mail:
| | - Hunter Quon
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Jared Ervin
- Geosyntec Consultants, Santa Barbara, CA 93101, USA
| | - Sunny Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Diego Rosso
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Laurie C Van De Werfhorst
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93016, USA
| | | | - Patricia A Holden
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93016, USA
| |
Collapse
|
7
|
Angga MS, Malla B, Raya S, Kitajima M, Haramoto E. Optimization and performance evaluation of an automated filtration method for the recovery of SARS-CoV-2 and other viruses in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163487. [PMID: 37068668 PMCID: PMC10105377 DOI: 10.1016/j.scitotenv.2023.163487] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
A rapid virus concentration method is needed to get high throughput. Reliable results of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) detection in wastewater are necessary for applications in wastewater-based epidemiology. In this study, an automated filtration method using a concentrating pipette (CP Select; Innovaprep) was applied to detect SARS-CoV-2 in wastewater samples with several modifications to increase its sensitivity and throughput. The performance of the CP Select method was compared to other concentration methods (polyethylene glycol precipitation and direct capture using silica column) to evaluate its applicability to SARS-CoV-2 detection in wastewater. SARS-CoV-2 RNA was successfully detected in six of eight wastewater samples using the CP Select method, whereas other methods could detect SARS-CoV-2 RNA in all wastewater samples. Enteric viruses, such as noroviruses of genogroups I (NoVs-GI) and II (NoVs-GII) and enteroviruses, were tested, resulting in 100 % NoVs-GII detection using all concentration methods. As for NoVs-GI and enteroviruses, all methods gave comparable number of detected samples in wastewater samples. This study showed that the optimized CP Select method was less sensitive in SARS-CoV-2 detection in wastewater than other methods, whereas all methods were applicable to detect or recover other viruses in wastewater.
Collapse
Affiliation(s)
- Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
8
|
Ahmed W, Smith WJM, Sirikanchana K, Kitajima M, Bivins A, Simpson SL. Influence of membrane pore-size on the recovery of endogenous viruses from wastewater using an adsorption-extraction method. J Virol Methods 2023; 317:114732. [PMID: 37080396 PMCID: PMC10111872 DOI: 10.1016/j.jviromet.2023.114732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
The ongoing COVID-19 pandemic has emphasized the significance of wastewater surveillance in monitoring and tracking the spread of infectious diseases, including SARS-CoV-2. The wastewater surveillance approach detects genetic fragments from viruses in wastewater, which could provide an early warning of outbreaks in communities. In this study, we determined the concentrations of four types of endogenous viruses, including non-enveloped DNA (crAssphage and human adenovirus 40/41), non-enveloped RNA (enterovirus), and enveloped RNA (SARS-CoV-2) viruses, from wastewater samples using the adsorption-extraction (AE) method with electronegative HA membranes of different pore sizes (0.22, 0.45, and 0.80 µm). Our findings showed that the membrane with a pore size of 0.80 µm performed comparably to the membrane with a pore size of 0.45 µm for virus detection/quantitation (repeated measurement one-way ANOVA; p > 0.05). We also determined the recovery efficiencies of indigenous crAssphage and pepper mild mottle virus, which showed recovery efficiencies ranging from 50% to 94% and from 20% to 62%, respectively. Our results suggest that the use of larger pore size membranes may be beneficial for processing larger sample volumes, particularly for environmental waters containing low concentrations of viruses. This study offers valuable insights into the application of the AE method for virus recovery from wastewater, which is essential for monitoring and tracking infectious diseases in communities.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok 10210, Thailand
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060 -8628, Japan
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
9
|
Iwamoto R, Yamaguchi K, Katayama K, Ando H, Setsukinai KI, Kobayashi H, Okabe S, Imoto S, Kitajima M. Identification of SARS-CoV-2 variants in wastewater using targeted amplicon sequencing during a low COVID-19 prevalence period in Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:163706. [PMID: 37105480 PMCID: PMC10129341 DOI: 10.1016/j.scitotenv.2023.163706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023]
Abstract
Wastewater-based epidemiology is expected to be able to identify SARS-CoV-2 variants at an early stage via next-generation sequencing. In the present study, we developed a highly sensitive amplicon sequencing method targeting the spike gene of SARS-CoV-2, which allows for sequencing viral genomes from wastewater containing a low amount of virus. Primers were designed to amplify a relatively long region (599 bp) around the receptor-binding domain in the SARS-CoV-2 spike gene, which could distinguish initial major variants of concern. To validate the methodology, we retrospectively analyzed wastewater samples collected from a septic tank installed in a COVID-19 quarantine facility between October and December 2020. The relative abundance of D614G mutant in SARS-CoV-2 genomes in the facility wastewater increased from 47.5 % to 83.1 % during the study period. The N501Y mutant, which is the characteristic mutation of the Alpha-like strain, was detected from wastewater collected on December 24, 2020, which agreed with the fact that a patient infected with the Alpha-like strain was quarantined in the facility on this date. We then analyzed archived municipal wastewater samples collected between November 2020 and January 2021 that contained low SARS-CoV-2 concentrations ranging from 0.23 to 0.43 copies/qPCR reaction (corresponding to 3.30 to 4.15 log10 copies/L). The targeted amplicon sequencing revealed that the Alpha-like variant with D614G and N501Y mutations was present in municipal wastewater collected on December 4, 2020 and later, suggesting that the variant had already spread in the community before its first clinical confirmation in Japan on December 25, 2020. These results demonstrate that targeted amplicon sequencing of wastewater samples is a powerful surveillance tool applicable to low COVID-19 prevalence periods and may contribute to the early detection of emerging variants.
Collapse
Affiliation(s)
- Ryo Iwamoto
- Shionogi & Co., Ltd., 1-8, Doshomachi 3-Chome, Chuo-ku, Osaka 541-0045, Japan; AdvanSentinel Inc., 1-8, Doshomachi 3-Chome, Chuo-ku, Osaka 541-0045, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kotoe Katayama
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroki Ando
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Ken-Ichi Setsukinai
- Shionogi & Co., Ltd., 1-8, Doshomachi 3-Chome, Chuo-ku, Osaka 541-0045, Japan
| | - Hiroyuki Kobayashi
- Shionogi & Co., Ltd., 1-8, Doshomachi 3-Chome, Chuo-ku, Osaka 541-0045, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
10
|
Malla B, Thakali O, Shrestha S, Segawa T, Kitajima M, Haramoto E. Application of a high-throughput quantitative PCR system for simultaneous monitoring of SARS-CoV-2 variants and other pathogenic viruses in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158659. [PMID: 36096223 PMCID: PMC9461275 DOI: 10.1016/j.scitotenv.2022.158659] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 05/11/2023]
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuously emerging, highlighting the importance of regular surveillance of SARS-CoV-2 and other epidemiologically significant pathogenic viruses in the current context. Reverse transcription-quantitative PCR (RT-qPCR) is expensive, time-consuming, labor-intensive, requires a large reagent volume, and only tests a few targets in a single run. High-throughput qPCR (HT-qPCR) utilizing the Biomark HD system (Fluidigm) can be used as an alternative. This study applied an HT-qPCR to simultaneously detect SARS-CoV-2, SARS-CoV-2 nucleotide substituted RNA, and other pathogenic viruses in wastewater. Wastewater samples were collected from the coronavirus disease 2019 (COVID-19) quarantine facility between October 2020 and February 2021 (n = 4) and from the combined and separated sewer lines of a wastewater treatment plant (WWTP) in Yokkaichi, Mie Prefecture, Japan, between March and August 2021 (n = 23 each). The samples were analyzed by HT-qPCR using five SARS-CoV-2, nine SARS-CoV-2 spike gene nucleotide substitution-specific, five pathogenic viruses, and three process control assays. All samples from the quarantine facility tested positive for SARS-CoV-2 and the nucleotide substitutions N501Y and S69-70 del (Alpha variant) were detected in the December 2020 sample, coinciding with the first clinical case in Japan. Only three WWTP samples were positive when tested with a single SARS-CoV-2 assay, whereas more than eight samples were positive when tested with all assays, indicating that using multiple assays increases the likelihood of detection. The nucleotide substitution L452R (Delta variant) was detected in the WWTP samples of Mie Prefecture in April 2021, but the detection of Delta variant from patients had not been reported until May 2021. Aichi virus 1 and norovirus GII were prevalent in WWTP samples. This study demonstrated that HT-qPCR may be the most time- and cost-efficient method for tracking COVID-19 and broadly monitoring community health.
Collapse
Affiliation(s)
- Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Ocean Thakali
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan; Institute for the Advanced Study of Sustainability, United Nations University, 5-53-70 Jingumae, Shibuya-ku, Tokyo 150-8925, Japan
| | - Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|