1
|
De Felice B, Gazzotti S, Ortenzi MA, Parolini M. Multi-level toxicity assessment of polylactic acid (PLA) microplastics on the cladoceran Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106966. [PMID: 38815345 DOI: 10.1016/j.aquatox.2024.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
The accumulation of plastics waste in the environment has raised a worrisome concern, moving the society to seek out for sustainable solutions, such as the transition from the use of fossil-based, conventional plastics to bioplastics (BPs). However, once in the environment bioplastics have the same probability to accumulate and experience weathering processes than conventional plastics, leading to the formation of microplastics (MPs). However, to date the information on the potential toxicity of MPs originated from the weathering of bioplastics is limited. Thus, this study aimed at investigating the adverse effects induced by the exposure to MPs made of a bioplastic polymer, the polylactic acid (PLA), towards the freshwater cladoceran Daphnia magna. Organisms were exposed for 21 days to three concentrations (0.125 µg/mL, 1.25 µg/mL and 12.5 µg/mL) of PLA microplastics (hereafter PLA-MPs). A multi-level approach was performed to investigate the potential effects through the biological hierarchy, starting from the sub-individual up to the individual level. At the sub-individual level, changes in the oxidative status (i.e., the amount of reactive oxygen species and the activity of antioxidant and detoxifying enzymes) and oxidative damage (i.e., lipid peroxidation) were explored. Moreover, the total caloric content as well as the content of protein, carbohydrate and lipid content assess were used to investigate the effects on energy reserves. At individual level the changes in swimming activity (i.e., distance moved and swimming speed) were assessed. Our results showed that the exposure to PLA-MPs induced a slight modulation in the oxidative status and energy reserves, leading to an increase in swimming behavior of treated individuals compared to control conspecifics. These results suggest that the exposure to MPs made of a bioplastic polymer can induce adverse effects similar to those caused by conventional polymers.
Collapse
Affiliation(s)
- Beatrice De Felice
- University of Milan, Department of Environmental Science and Policy, via Celoria 26, I-20133 Milan, Italy.
| | - Stefano Gazzotti
- University of Milan, Laboratory of Materials and Polymers (LaMPo), Department of Chemistry, via Golgi 19, I-20133 Milan, Italy
| | - Marco Aldo Ortenzi
- University of Milan, Laboratory of Materials and Polymers (LaMPo), Department of Chemistry, via Golgi 19, I-20133 Milan, Italy
| | - Marco Parolini
- University of Milan, Department of Environmental Science and Policy, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
2
|
Costanzo A, Ambrosini R, Manica M, Casola D, Polidori C, Gianotti V, Conterosito E, Roncoli M, Parolini M, De Felice B. Microfibers in the Diet of a Highly Aerial Bird, the Common Swift Apus apus. TOXICS 2024; 12:408. [PMID: 38922088 PMCID: PMC11209442 DOI: 10.3390/toxics12060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Microplastic pollution is a pervasive global issue affecting various ecosystems. Despite the escalating production and well-documented contamination in both aquatic and terrestrial environments, the research focused on airborne microplastics and their interaction with terrestrial birds remains limited. In this study, we collected fecal sacs from Common swifts (Apus apus) to investigate their diet and to evaluate the potential ingestion of microplastics by both adults and nestlings. The diet was mainly composed of Hymenoptera and Coleoptera and did not differ among sexes and age classes. The 33% of nestlings' and 52% of adults' fecal sacs contained anthropogenic items, the totality of which was in the shape form of fibers. The 19.4% of the anthropogenic items were chemically characterized as microplastics, either polyethylene terephthalate (PET; two microfibers) or cellophane (four microfibers). Airborne anthropogenic items, including microplastic, might be passively ingested during the Common swift aerial feeding. In addition, our findings suggest that these ingested microparticles have the potential to be transferred to the offspring through food. While further research is essential to elucidate the pathways of microplastic ingestion, our results reinforce the evidence of the transfer of anthropogenic items from the atmosphere to the biota.
Collapse
Affiliation(s)
- Alessandra Costanzo
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy; (R.A.); (C.P.); (M.P.); (B.D.F.)
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy; (R.A.); (C.P.); (M.P.); (B.D.F.)
| | - Milo Manica
- Gruppo Insubrico di Ornitologia OdV, Via Manzoni 21, Clivio, I-21050 Varese, Italy; (M.M.); (D.C.)
| | - Daniela Casola
- Gruppo Insubrico di Ornitologia OdV, Via Manzoni 21, Clivio, I-21050 Varese, Italy; (M.M.); (D.C.)
| | - Carlo Polidori
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy; (R.A.); (C.P.); (M.P.); (B.D.F.)
| | - Valentina Gianotti
- Dipartimento dello Sviluppo Sostenibile e della Transizione Ecologica, Università del Piemonte Orientale, Piazza S. Eusebio 5, I-13100 Vercelli, Italy; (V.G.); (E.C.); (M.R.)
| | - Eleonora Conterosito
- Dipartimento dello Sviluppo Sostenibile e della Transizione Ecologica, Università del Piemonte Orientale, Piazza S. Eusebio 5, I-13100 Vercelli, Italy; (V.G.); (E.C.); (M.R.)
| | - Maddalena Roncoli
- Dipartimento dello Sviluppo Sostenibile e della Transizione Ecologica, Università del Piemonte Orientale, Piazza S. Eusebio 5, I-13100 Vercelli, Italy; (V.G.); (E.C.); (M.R.)
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy; (R.A.); (C.P.); (M.P.); (B.D.F.)
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy; (R.A.); (C.P.); (M.P.); (B.D.F.)
| |
Collapse
|
3
|
Parolini M, Perin E, De Felice B, Gazzotti S, Palazzi A, Conti L, Conterosito E, Rosio E, Bruno F, Gianotti V, Cavallo R. Altitudinal variation of microplastic abundance in lakeshore sediments from Italian lakes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35864-35877. [PMID: 38743335 PMCID: PMC11136813 DOI: 10.1007/s11356-024-33648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Microplastic (MP) contamination represents an issue of global concern for both aquatic and terrestrial ecosystems, but only in recent years, the study of MPs has been focused on freshwaters. Several monitoring surveys have detected the presence of a wide array of MPs differing in size, shape, and polymer composition in rivers and lakes worldwide. Because of their role of sink for plastic particles, the abundance of MPs was investigated in waters, and deep and shoreline sediments from diverse lakes, confirming the ubiquity of this contamination. Although diverse factors, including those concerning anthropogenic activities and physical characteristics of lakes, have been supposed to affect MP abundances, very few studies have directly addressed these links. Thus, the aim of the present study was to explore the levels of MP contamination in mountain and subalpine lakes from Northern Italy. Fourteen lakes dislocated at different altitudes and characterized by dissimilar anthropic pressures were visited. Lakeshore sediments were collected close to the drift line to assess MPs contamination. Our results showed the presence of MPs in lakeshore sediments from all the lakes, with a mean (± standard deviation) expressed as MPs/Kg dry sediment accounting to 14.42 ± 13.31 (range 1.57-61.53), while expressed as MPs/m2, it was 176.07 ± 172.83 (range 25.00-666.67). The MP abundance measured for Garda Lake was significantly higher compared to all the other ones (F1,13 = 7.344; P < 0.001). The pattern of contamination was dominated by fibers in all the lakes, but they were the main contributors in mountain lakes. These findings showed that the MP abundance varied according to the altitude of the lakes, with higher levels measured in subalpine lakes located at low altitudes and surrounded by populated areas.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| | - Elena Perin
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, 13100, Vercelli, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milan, Italy
| | - Adriano Palazzi
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Luca Conti
- ERICA Soc. Coop, Via Santa Margherita, 26, 12051, Cuneo, Italy
| | - Eleonora Conterosito
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, 13100, Vercelli, Italy
| | - Emanuela Rosio
- ERICA Soc. Coop, Via Santa Margherita, 26, 12051, Cuneo, Italy
| | - Francesco Bruno
- ERICA Soc. Coop, Via Santa Margherita, 26, 12051, Cuneo, Italy
| | - Valentina Gianotti
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, 13100, Vercelli, Italy
| | - Roberto Cavallo
- ERICA Soc. Coop, Via Santa Margherita, 26, 12051, Cuneo, Italy
| |
Collapse
|
4
|
Nohara NML, Ariza-Tarazona MC, Triboni ER, Nohara EL, Villarreal-Chiu JF, Cedillo-González EI. Are you drowned in microplastic pollution? A brief insight on the current knowledge for early career researchers developing novel remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170382. [PMID: 38307272 DOI: 10.1016/j.scitotenv.2024.170382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Microplastics (MPs) composed of different polymers with various shapes, within a vast granulometric distribution (1 μm - 5 mm) and with a wide variety of physicochemical surface and bulk characteristics spiral around the globe, with different atmospheric, oceanic, cryospheric, and terrestrial residence times, while interacting with other pollutants and biota. The challenges of microplastic pollution are related to the complex relationships between the microplastic generation mechanisms (physical, chemical, and biological), their physicochemical properties, their interactions with other pollutants and microorganisms, the changes in their properties with aging, and their small sizes that facilitate their diffusion and transportation between the air, water, land, and biota, thereby promoting their ubiquity. Early career researchers (ERCs) constitute an essential part of the scientific community committed to overcoming the challenges of microplastic pollution with their new ideas and innovative scientific perspectives for the development of remediation technologies. However, because of the enormous amount of scientific information available, it may be difficult for ERCs to determine the complexity of this environmental issue. This mini-review aims to provide a quick and updated overview of the essential insights of microplastic pollution to ERCs to help them acquire the background needed to develop highly innovative physical, chemical, and biological remediation technologies, as well as valorization proposals and environmental education and awareness campaigns. Moreover, the recommendations for the development of holistic microplastic pollution remediation strategies presented here can help ERCs propose technologies considering the environmental, social, and practical dimensions of microplastic pollution while fulfilling the current government policies to manage this plastic waste.
Collapse
Affiliation(s)
- Nicoly Milhardo Lourenço Nohara
- Department of Chemical Engineering, School of Engineering of Lorena, University of São Paulo, Estrada Municipal do Campinho, no number, Lorena, Brazil
| | - Maria Camila Ariza-Tarazona
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
| | - Eduardo Rezende Triboni
- Department of Chemical Engineering, School of Engineering of Lorena, University of São Paulo, Estrada Municipal do Campinho, no number, Lorena, Brazil
| | - Evandro Luís Nohara
- Department of Mechanical Engineering, University of Taubaté, R. Daniel Daneli, no number, Taubaté, Brazil
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66628, Nuevo León, Mexico
| | - Erika Iveth Cedillo-González
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti, Florence 50121, Italy.
| |
Collapse
|
5
|
Tan Y, Dai J, Xiao S, Tang Z, Zhang J, Wu S, Wu X, Deng Y. Occurrence of microplastic pollution in rivers globally: Driving factors of distribution and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:165979. [PMID: 37543313 DOI: 10.1016/j.scitotenv.2023.165979] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Microplastics, as global emerging pollutants, have received significant attention worldwide due to their ubiquitous presence in the rivers. However, there is still a lack of clarity on the occurrence, driving factors, and ecological risks of microplastics in rivers worldwide. In this study, a global microplastic dataset based on 862 water samples and 445 sediment samples obtained from 63 articles was constructed, which revealed the temporal and spatial distribution of abundance and morphological characteristics of microplastics in rivers across the globe. In global rivers, the abundance of MPs in both water and sediment spans across 10 and 4 orders of magnitude, respectively. The MP comprehensive diversity index based on the physical morphological characteristics of MPs indicated a significant positive correlation between the pollution sources of MPs in different environmental media. Based on the data was aligned to the full-scale MPs, a novel framework was provided to evaluate the ecological risk of MPs and the interaction effects between the influencing factors driving the distribution characteristics of MPs in rivers around the world. The results obtained demonstrated a wide variation in the key driving factors affecting the distribution of microplastics in different environmental media (water and sediment) in rivers globally. The diversity indices of the morphological characteristics of MPs in densely populated areas of lower-middle income countries in Asia were significantly higher, implying that the sources of microplastics in these regions are more complex and extensive. More than half of the rivers are exposed to potential ecological risks of MPs; however, microplastics may pose only immediate risks to aquatic species in Burigang River, Bangladesh. This can provide valuable insights for formulating more effective scientific strategies for the management of MP pollution in rivers.
Collapse
Affiliation(s)
- Yanping Tan
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jiangyu Dai
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Shuwen Xiao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China
| | - Zhiqiang Tang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China
| | - Jianmin Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Shiqiang Wu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Xiufeng Wu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Yu Deng
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China.
| |
Collapse
|
6
|
Impact of anthropogenic contamination on glacier surface biota. Curr Opin Biotechnol 2023; 80:102900. [PMID: 36764028 DOI: 10.1016/j.copbio.2023.102900] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023]
Abstract
Glaciers are ecosystems and they host active biological communities. Despite their remoteness, glaciers act as cold condensers where high precipitation rates and cold temperatures favor the deposition of pollutants. These contaminants include a broad range of substances, including legacy pollutants, but also compounds still largely used. Some of these compounds are monitored in the environment and their effects on the ecosystems are known, in contrast others can be defined as emerging pollutants since their presence and their impact on the environment are still poorly understood (e.g. microplastics, radionuclides). This review aim to provide an overview of the studies that have investigated the effects of pollutants on the supraglacial ecosystem so far. Despite the distribution of the pollutants in glacier environments has been discussed in several studies, no review paper has summarized the current knowledge on the effects of these substances on the ecological communities living in glacier ecosystems.
Collapse
|