1
|
Zhu L, Xu Y, Li J, Lin G, Han X, Yi J, Jayaprada T, Zhou Z, Ying Y, Wang M. Environmentally persistent microbial contamination in agricultural soils: High risk of pathogenicity and antibiotic resistance. ENVIRONMENT INTERNATIONAL 2024; 190:108902. [PMID: 39059024 DOI: 10.1016/j.envint.2024.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Persistent microbial contamination commonly occurs in the environment. However, the characteristics and associated risks remain largely unknown. The coexistence of virulence factor genes (VFGs) and "last-resort" antibiotic resistance genes (LARGs) on human bacterial pathogens (HBPs) are notorious, creating ecological concerns and health risks. Herein, we explored the pathogenicity and antibiotic resistance levels of LARG-harboring HBPs in agricultural soils. Our findings revealed a high distribution level of VFGs and LARGs in soils (an absolute abundance up to 4.7 × 107 gene copies/g soil) by quantitative PCR (qPCR). Furthermore, most isolated LARG-harboring HBPs exhibited a 100 % lethality rate to Galleria mellonella. LARG-carrying plasmids had a low fitness cost to their host bacteria, implying the high adaptation of these plasmids within the HBPs. Most importantly, multiple LARG and VFG plasmid fusion and core genetic arrangements suggested that these LARG/VFG-linked plasmids endowed the stable and persistent horizontal spread of these genes in and/or cross the species and environments. This study not only unveiled high risk, multisource, compliance and stability aspects of environmentally persistent microbial contamination but also illuminated the importance of linking the phenotype-genotype-niche colonization of environmental microbial contamination within "One Health" framework.
Collapse
Affiliation(s)
- Lin Zhu
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yongchang Xu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingpeng Li
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Guoping Lin
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xuezhu Han
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiaming Yi
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Thilini Jayaprada
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhenchao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiqian Ying
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Meizhen Wang
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
2
|
Liu Y, Chu K, Hua Z, Li Q, Lu Y, Ye F, Dong Y, Li X. Dynamics of antibiotic resistance genes in the sediments of a water-diversion lake and its human exposure risk behaviour. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172563. [PMID: 38641096 DOI: 10.1016/j.scitotenv.2024.172563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The dynamics and exposure risk behaviours of antibiotic resistance genes (ARGs) in the sediments of water-diversion lakes remain poorly understood. In this study, spatiotemporal investigations of ARG profiles in sediments targeting non-water (NWDP) and water diversion periods (WDP) were conducted in Luoma Lake, a typical water-diversion lake, and an innovative dynamics-based risk assessment framework was constructed to evaluate ARG exposure risks to local residents. ARGs in sediments were significantly more abundant in the WDP than in the NWDP, but there was no significant variation in their spatial distribution in either period. Moreover, the pattern of ARG dissemination in sediments was unchanged between the WDP and NWDP, with horizontal gene transfer (HGT) and vertical gene transfer (VGT) contributing to ARG dissemination in both periods. However, water diversion altered the pattern in lake water, with HGT and VGT in the NWDP but only HGT in the WDP, which were critical pathways for the dissemination of ARGs. The significantly lower ARG sediment-water partition coefficient in the WDP indicated that water diversion could shift the fate of ARGs and facilitate their aqueous partitioning. Risk assessment showed that all age groups faced a higher human exposure risk of ARGs (HERA) in the WDP than in the NWDP, with the 45-59 age group having the highest risk. Furthermore, HERA increased overall with the bacterial carrying capacity in the local environment and peaked when the carrying capacity reached three (NWDP) or four (WDP) orders of magnitude higher than the observed bacterial population. HGT and VGT promoted, whereas ODF covering gene mutation and loss mainly reduced HERA in the lake. As the carrying capacity increased, the relative contribution of ODF to HERA remained relatively stable, whereas the dominant mechanism of HERA development shifted from HGT to VGT.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Qiming Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Ying Lu
- Institute for Smart City of Chongqing University in Liyang, Liyang 213300, PR China
| | - Fuzhu Ye
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Yueyang Dong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
3
|
Hou Y, Diao W, Jia R, Sun W, Feng W, Li B, Zhu J. Variations in antibiotic resistomes associated with archaeal, bacterial, and viral communities affected by integrated rice-fish farming in the paddy field ecosystem. ENVIRONMENTAL RESEARCH 2024; 251:118717. [PMID: 38518910 DOI: 10.1016/j.envres.2024.118717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Antibiotic resistance genes (ARGs) serving as a newly recognized pollutant that poses potential risks to global human health, which in the paddy soil can be potentially altered by different agricultural production patterns. To elucidate the impacts and mechanisms of the widely used and sustainable agricultural production pattern, namely integrated rice-fish farming, on the antibiotic resistomes, we applied metagenomic sequencing to assess ARGs, mobile genetic elements (MGEs), bacteria, archaea, and viruses in paddy soil. There were 20 types and 359 subtypes of ARGs identified in paddy soil. The integrated rice-fish farming reduced the ARG and MGE diversities and the abundances of dominant ARGs and MGEs. Significantly decreased ARGs were mainly antibiotic deactivation and regulator types and primarily ranked level IV based on their potential threat to human health. The integrated rice-fish farming decreased the alpha diversities and altered microbial community compositions. MGEs, bacteria, archaea, and virus exhibited significant correlations with ARGs, while integrated rice-fish farming effectively changed their interrelationships. Viruses, bacteria, and MGEs played crucial roles in affecting the ARGs by the integrated rice-fish farming. The most crucial pathway by which integrated rice-fish farming affected ARGs was through the modulation of viral communities, thereby directly or indirectly influencing ARG abundance. Our research contributed to the control and restoration of ARGs pollution from a new perspective and providing theoretical support for the development of clean and sustainable agricultural production.
Collapse
Affiliation(s)
- Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Weixu Diao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wei Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenrong Feng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| |
Collapse
|
4
|
Jia WL, Zhang M, Gao FZ, Bai H, He LX, He LY, Liu T, Han Y, Ying GG. Antibiotic resistome in landfill leachate and impact on groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171991. [PMID: 38547976 DOI: 10.1016/j.scitotenv.2024.171991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Landfill leachate is a hotspot in antibiotic resistance development. However, little is known about antibiotic resistome and host pathogens in leachate and their effects on surrounding groundwater. Here, metagenomic sequencing was used to explore profiles, host bacteria, environmental risks and influencing factors of antibiotic resistome in raw and treated leachate and surrounding groundwater of three landfills. Results showed detection of a total of 324 antibiotic resistance genes (ARGs). The ARGs conferring resistance to multidrug (8.8 %-25.7 %), aminoglycoside (13.1 %-39.2 %), sulfonamide (10.0 %-20.9 %), tetracycline (5.7 %-34.4 %) and macrolide-lincosamide-streptogramin (MLS, 5.3 %-29.5 %) were dominant in raw leachate, while multidrug resistance genes were the major ARGs in treated leachate (64.1 %-83.0 %) and groundwater (28.7 %-76.6 %). Source tracking analysis suggests non-negligible influence of leachate on the ARGs in groundwater. The pathogens including Acinetobacter pittii, Pseudomonas stutzeri and P. alcaligenes were the major ARG-carrying hosts. Variance partitioning analysis indicates that the microbial community, abiotic variables and their interaction contributed most to the antibiotic resistance development. Our results shed light on the dissemination and driving mechanisms of ARGs from leachate to the groundwater, indicating that a comprehensive risk assessment and efficient treatment approaches are needed to deal with ARGs in landfill leachate and nearby groundwater. ENVIRONMENTAL IMPLICATIONS: Antibiotic resistance genes are found abundant in the landfill sites, and these genes could be disseminated into groundwater via leaching of wastewater and infiltration of leachate. This results in deterioration of groundwater quality and human health risks posed by these ARGs and related pathogens. Thus measures should be taken to minimize potential negative impacts of landfills on the surrounding environment.
Collapse
Affiliation(s)
- Wei-Li Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu Han
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
5
|
Li YJ, Yuan Y, Tan WB, Xi BD, Wang H, Hui KL, Chen JB, Zhang YF, Wang LF, Li RF. Antibiotic resistance genes and heavy metals in landfill: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132395. [PMID: 37976849 DOI: 10.1016/j.jhazmat.2023.132395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023]
Abstract
Landfill is reservoir containing antibiotic resistance genes (ARGs) that pose a threat to human life and health. Heavy metals impose lasting effects on ARGs. This review investigated and analyzed the distribution, composition, and abundance of heavy metals and ARGs in landfill. The abundance ranges of ARGs detected in refuse and leachate were similar. The composition of ARG varied with sampling depth in refuse. ARG in leachate varies with the distribution of ARG in the refuse. The ARG of sulI was associated with 11 metals (Co, Pb, Mn, Zn, Cu, Cr, Ni, Sb, As, Cd, and Al). The effects of the total metal concentration on ARG abundance were masked by many factors. Low heavy metal concentrations showed positive effects on ARG diffusion; conversely, high heavy metal concentrations showed negative effects. Organic matter had a selective pressure effect on microorganisms and could provide energy for the diffusion of ARGs. Complexes of heavy metals and organic matter were common in landfill. Therefore, the hypothesis was proposed that organic matter and heavy metals have combined effects on the horizontal gene transfer (HGT) of ARGs during landfill stabilization. This work provides a new basis to better understand the HGT of ARGs in landfill.
Collapse
Affiliation(s)
- Yan-Jiao Li
- School of Materials Science and engineering, Dalian Jiaotong University, Dalian 116021, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wen-Bing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kun-Long Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia-Bao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi-Fan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lian-Feng Wang
- School of Materials Science and engineering, Dalian Jiaotong University, Dalian 116021, China
| | - Ren-Fei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
6
|
Shen W, Zhang H, Li X, Qi D, Liu R, Kang G, Liu J, Li N, Zhang S, Hu S. Pathogens and antibiotic resistance genes during the landfill leachate treatment process: Occurrence, fate, and impact on groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165925. [PMID: 37544439 DOI: 10.1016/j.scitotenv.2023.165925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Landfill leachate is an essential source of pathogens and antibiotic resistance genes (ARGs) in the environment. However, information on the removal behavior of pathogens and ARGs during the leachate treatment and the impact on surrounding groundwater is limited. In this study, we investigated the effects of leachate treatment on the removal of pathogens and ARGs with metagenomic sequencing, as well as the impact of landfill effluent on groundwater. It is shown that the leachate treatment could not completely remove pathogens and ARGs. Twenty-nine additional pathogens and twenty-nine ARGs were newly identified in the landfill effluent. The relative abundance of pathogens and multiple antibiotic resistance genes decreased after ultrafiltration but relative abundance increased after reverse osmosis. In addition, the relative abundances of Acinetobacter baumannii, Erwinia amylovora, Escherichia coli, Fusarium graminearum, Klebsiella pneumoniae, and Magnaporthe oryzae, as well as mdtH, VanZ, and blaOXA-53 increased significantly in the landfill effluent compared to the untreated leachate. The relative abundance of some mobile genetic elements (tniA, tniB, tnpA, istA, IS91) in leachate also increased after ultrafiltration and reverse osmosis. The size of pathogens, the size and properties of ARGs and mobile genetic elements, and the materials of ultrafiltration and reverse osmosis membranes may affect the removal effect of pathogens, ARGs and mobile genetic elements in leachate treatment process. Interestingly, the pathogens and ARGs in landfill effluent were transferred to groundwater according to SourceTracker. The ARGs, mobile genetic elements, and pathogens that are difficult to remove in the leachate treatment process, provide a reference for optimizing the leachate treatment process and improving the control of pathogens and ARGs. Furthermore, this study clarifies the effect of landfill leachate sources of pathogens and ARGs in groundwater.
Collapse
Affiliation(s)
- Weitao Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xuejian Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Department of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dan Qi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guodong Kang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jinglong Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Nan Li
- Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| |
Collapse
|
7
|
Wu Y, Gong Z, Wang S, Song L. Occurrence and prevalence of antibiotic resistance genes and pathogens in an industrial park wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163278. [PMID: 37019240 DOI: 10.1016/j.scitotenv.2023.163278] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Antibiotic resistance genes (ARGs) and pathogens are emerging environmental pollutants that pose a threat to human health and ecosystem. Industrial park wastewater treatment plants (WWTPs) treat large amounts of comprehensive wastewater derived from industrial production and park human activity, which is possible a source of ARGs and pathogens. Therefore, this study investigated the occurrence and prevalence of ARGs, ARGs hosts and pathogens and assesses the ARGs health risk in the biological treatment process in a large-sale industrial park WWTP using metagenomic analysis and omics-based framework, respectively. Results show that the major ARG subtypes are multidrug resistance genes (MDRGs), macB, tetA(58), evgS, novA, msbA and bcrA and the ARGs main hosts were genus Acidovorax, Pseudomonas, Mesorhizobium. In particular, all determined ARGs genus level hosts are pathogens. The total removal percentage of ARGs, MDRGs and pathogens were 12.77 %, 12.96 % and 25.71 % respectively, suggesting that the present treatment could not efficiently remove these pollutants. The relative abundance of ARGs, MDRGs and pathogens varied along biological treatment process that ARGs and MDRGs were enriched in activated sludge and pathogens were enriched in both secondary sedimentation tank and activated sludge. Among 980 known ARGs, 23 ARGs (e.g., ermB, gadX and tetM) were assigned into risk Rank I with characters of enrichment in the human-associated environment, gene mobility and pathogenicity. The results indicate that industrial park WWTPs might serve as an important source of ARGs, MDRGs, and pathogens. These observations invite further study of the origination, development, dissemination and risk assessment of industrial park WWTPs ARGs and pathogens.
Collapse
Affiliation(s)
- Yongyi Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Zhourui Gong
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Shuijing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
8
|
Yan K, Wei M, Li F, Wu C, Yi S, Tian J, Liu Y, Lu H. Diffusion and enrichment of high-risk antibiotic resistance genes (ARGs) via the transmission chain (mulberry leave, guts and feces of silkworm, and soil) in an ecological restoration area of manganese mining, China: Role of heavy metals. ENVIRONMENTAL RESEARCH 2023; 225:115616. [PMID: 36871940 DOI: 10.1016/j.envres.2023.115616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the diffusion and enrichment of antibiotic resistance genes (ARGs) and pathogens via the transmission chain (mulberry leaves - silkworm guts - silkworm feces - soil) near a manganese mine restoration area (RA) and control area (CA, away from RA). Horizontal gene transfer (HGT) of ARGs was testified by an IncP a-type broad host range plasmid RP4 harboring ARGs (tetA) and conjugative genes (e.g., korB, trbA, and trbB) as an indicator. Compared to leaves, the abundances of ARGs and pathogens in feces after silkworms ingested leaves from RA increased by 10.8% and 52.3%, respectively, whereas their abundance in feces from CA dropped by 17.1% and 97.7%, respectively. The predominant ARG types in feces involved the resistances to β-lactam, quinolone, multidrug, peptide, and rifamycin. Therein, several high-risk ARGs (e.g., qnrB, oqxA, and rpoB) carried by pathogens were more enriched in feces. However, HGT mediated by plasmid RP4 in this transmission chain was not a main factor to promote the enrichment of ARGs due to the harsh survival environment of silkworm guts for the plasmid RP4 host E. coli. Notably, Zn, Mn, and As in feces and guts promoted the enrichment of qnrB and oqxA. Worriedly, the abundance of qnrB and oqxA in soil increased by over 4-fold after feces from RA were added into soil for 30 days regardless of feces with or without E. coli RP4. Overall, ARGs and pathogens could diffuse and enrich in environment via the sericulture transmission chain developed at RA, especially some high-risk ARGs carried by pathogens. Thus, greater attentions should be paid to dispel such high-risk ARGs to support benign development of sericulture industry in the safe utilization of some RAs.
Collapse
Affiliation(s)
- Kanxuan Yan
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Ming Wei
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China.
| | - Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Jiang Tian
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Yun Liu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Engineering Laboratory for High-efficiency Purification Technology and Its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle About Novel Pollutants in Hunan Provincial Universities, Xiangtan, 411105, China
| | - Hainan Lu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environment Sciences, Shanghai, 200233, China
| |
Collapse
|
9
|
Zhang W, Yu C, Yin S, Chang X, Chen K, Xing Y, Yang Y. Transmission and retention of antibiotic resistance genes (ARGs) in chicken and sheep manure composting. BIORESOURCE TECHNOLOGY 2023; 382:129190. [PMID: 37196739 DOI: 10.1016/j.biortech.2023.129190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Transmission of ARGs during composting with different feedstocks (i.e., sheep manure (SM), chicken manure (CM) and mixed manure (MM, SM:CM= 3:1 ratio) was studied by metagenomic sequencing. 53 subtypes of ARGs for 22 types of antibiotics were identified as commonly present in these compost mixes; among them, CM had higher abundance of ARGs, 1.69 times than that in SM, while the whole elimination rate of CM, MM and SM were 55.2%, 54.7% and 42.9%, respectively. More than 50 subtypes of ARGs (with 8.6%, 11.4% and 20.9% abundance in the initial stage in CM, MM and SM composting) were "diehard" ARGs, and their abundance grew significantly to 56.5%, 63.2% and 69.9% at the mature stage. These "diehard" ARGs were transferred from initial hosts of pathogenic and/or probiotic bacteria to final hosts of thermophilic bacteria, by horizontal gene transfer (HGT) via mobile gene elements (MGEs), and became rooted in composting products.
Collapse
Affiliation(s)
- Wenming Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Chenxu Yu
- Department of Agriculture and Biosystem Engineering, Iowa State University, Ames 50010, US
| | - Siqian Yin
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xinyi Chang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Kaishan Chen
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yanhong Xing
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yingxiang Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
10
|
Zhang M, Li K, Wang P, Gu W, Huang H, Xie B. Comparative insight into the effects of different carbon source supplement on antibiotic resistance genes during whole-run and short-cut nitrification-denitrification processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27412-4. [PMID: 37249772 DOI: 10.1007/s11356-023-27412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/30/2023] [Indexed: 05/31/2023]
Abstract
Mature landfill leachate is known for nitrogen-removal challenging and meantime was considered as an important sink of antibiotic resistance genes (ARGs). The added external carbon sources, enabling the short-cut nitrification and denitrification, may facilitate the proliferation of bacteria that possibly carry ARGs. However, this speculation has yet to be studied. Here, we explored the effects of glucose, sodium acetate, and methanol supplements on ARGs during whole-run and short-cut treatment processes. The results showed that sodium acetate supplement during short-cut process efficiently reduced the abundances of total ARGs (0.84-1.99 copies/16S rRNA) and integrons (0.59-1.20 copies/16S rRNA), which were highly enhanced by methanol addition during whole-run treatment process (total ARGs: 3.60-11.01 copies/16S rRNA, integrons: 1.20-4.69 copies/16S rRNA). Indirect gradient analysis showed that the variation of ARGs was not correlated with the supplement of different external carbon source. Correlation analysis indicated that dominant intl1 (55.99 ± 17.61% of integrons) showed positively significant correlations with all detected ARGs expect for sul2 and ermB (p < 0.05), suggesting the significant role on ARGs dissemination. Redundancy analysis illustrated that the potential hosts of intl1, intl2, sul1, tetQ, tetM, mefA, and mexF were dominant Bacteroidetes and Actinobacteria. Interestingly, the numbers and significant extent of correlations under the supplement of sodium acetate during short-cut denitrification process were obviously declined, and it was in accordance with ARGs reduced by sodium acetate supplement, suggesting sodium acetate displayed the efficient ARGs reduction during short-cut process. In summary, this study provides a comparative understanding of the effects on ARGs by different carbon source supplements during nitrification-denitrification processes of leachate; sodium acetate is the optimal carbon source.
Collapse
Affiliation(s)
- Meilan Zhang
- The State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Laogang Waste Disposal Co., Shanghai, 201302, People's Republic of China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Wenchao Gu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Huang Huang
- Shanghai Laogang Waste Disposal Co., Shanghai, 201302, People's Republic of China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
11
|
Czatzkowska M, Wolak I, Harnisz M, Korzeniewska E. Impact of Anthropogenic Activities on the Dissemination of ARGs in the Environment-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912853. [PMID: 36232152 PMCID: PMC9564893 DOI: 10.3390/ijerph191912853] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 05/07/2023]
Abstract
Over the past few decades, due to the excessive consumption of drugs in human and veterinary medicine, the antimicrobial resistance (AR) of microorganisms has risen considerably across the world, and this trend is predicted to intensify. Many worrying research results indicate the occurrence of pools of AR, both directly related to human activity and environmental factors. The increase of AR in the natural environment is mainly associated with the anthropogenic activity. The dissemination of AR is significantly stimulated by the operation of municipal facilities, such as wastewater treatment plants (WWTPs) or landfills, as well as biogas plants, agriculture and farming practices, including animal production and land application of manure. These activities entail a risk to public health by spreading bacteria resistant to antimicrobial products (ARB) and antibiotic resistance genes (ARGs). Furthermore, subinhibitory concentrations of antimicrobial substances additionally predispose microbial consortia and resistomes to changes in particular environments that are permeated by these micropollutants. The current state of knowledge on the fate of ARGs, their dissemination and the complexity of the AR phenomenon in relation to anthropogenic activity is inadequate. This review summarizes the state-of-the-art knowledge on AR in the environment, in particular focusing on AR spread in an anthropogenically altered environment and related environmental consequences.
Collapse
|