1
|
Rangel DF, Costa LL, Ribeiro VV, De-la-Torre GE, Castro ÍB. Protective personal equipment on coastal environments: Identifying key drivers at a global scale. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133839. [PMID: 38402681 DOI: 10.1016/j.jhazmat.2024.133839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
The contamination of coastal ecosystems by personal protective equipment (PPE) emerged as a significant concern immediately following the declaration of the COVID-19 pandemic by the World Health Organization (WHO). Hence, numerous studies have assessed PPE occurrence on beaches worldwide. However, no predictors on PPE contamination was so far pointed out. The present study investigated social and landscape drivers affecting the PPE density in coastal environments worldwide using a meta-analysis approach. Spatial variables such as urban modification levels, coastal vegetation coverage, population density (HPD), distance from rivers (DNR), and poverty degree (GGRDI) were derived from global satellite data. These variables, along with the time elapsed after WHO declared the pandemic, were included in generalized additive models as potential predictors of PPE density. HPD consistently emerged as the most influential predictor of PPE density (p < 0.00001), exhibiting a positive effect. Despite the presence of complex non-linear relationships, our findings indicate higher PPE density in areas with intermediate GGRDI levels, indicative of emerging economies. Additionally, elevated PPE density was observed in areas located further away from rivers (p < 0.001), and after the initial months of the pandemic. Despite the uncertainties associated with the varied sampling methods employed by the studies comprising our database, this study offers a solid baseline for tackling the global problem of PPE contamination on beachesguiding monitoring assessments in future pandemics.
Collapse
Affiliation(s)
| | - Leonardo Lopes Costa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil; Instituto Solar Brasil de Desenvolvimento Saúde e Pesquisa - ISOBRAS, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil.
| |
Collapse
|
2
|
Tang Y, Zuo F, Li C, Zhang Q, Gao W, Cheng J. Combined effects of biochar and biodegradable mulch film on chromium bioavailability and the agronomic characteristics of tobacco. Sci Rep 2024; 14:6867. [PMID: 38514728 PMCID: PMC10957920 DOI: 10.1038/s41598-024-56973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Biochar (BC) and biodegradable mulch film (BMF) are both commonly used means of production in agriculture. In recent years, most studies have focused on the effects of BC or BMF on soil heavy metal pollution, while they have neglected the combined effects. In this study, a pot experiment was conducted to examine the impacts of BMF, BC, and combined BMF and BC (CMB) on the mobility of chromium (Cr) and the agronomic characteristics of flue-cured tobacco. Compared with the control, BMF, BC, and CMB significantly reduced the concentrations of diethylenetriamine pentaacetic acid (DTPA) extractable Cr in soils by 29.07-29.75%, 45.35-48.54%, and 34.21-37.92%, respectively. In comparison to the application of BMF and BC alone, co-application reduced the availability of Cr in soil via increasing the adsorption of soil Cr and soil enzyme activity, which resulted in the decrease of Cr content and bioconcentration factor and in plants. Moreover, the combined application increased the plant height, stem diameter, leaf area, total root area, root tip number, and root activity of tobacco, which leaded to increase in leaf and root biomass by 11.40-67.01% and 23.91-50.74%, respectively. Therefore, the application of CMB can reduce the heavy metal residues in tobacco leaves and improve tobacco yield and quality.
Collapse
Affiliation(s)
- Yuan Tang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Fumin Zuo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Changhong Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Qinghai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China.
| | - Jianzhong Cheng
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China.
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China.
| |
Collapse
|
3
|
Aslan H, Yılmaz O, Benfield MC, Becan SA. Temporal trends in personal protective equipment (PPE) debris during the COVID-19 pandemic in Çanakkale (Turkey). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165377. [PMID: 37422228 DOI: 10.1016/j.scitotenv.2023.165377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
This study examines trends in PPE (masks, gloves) and disinfecting wipes over three years of the pandemic. The densities of discarded masks, wet wipes, and gloves (personal protective equipment: PPE), were quantified on the streets of Canakkale, Turkey during similar time periods in 2020, 2021 and 2022. Geotagged images of PPE on the streets and sidewalks were documented with a smartphone, while the track of an observer was recorded using a fitness tracker app along a 7.777 km long survey route in the city center, parallel to the Dardanelles Strait. A total of 18 surveys were conducted over three years, and the survey route was subdivided into three zones based on utilization patterns: pedestrian zone, traffic zone and a recreational park zone. The combined densities of all types of PPE density were high in 2020, lower in 2021 and highest in 2022. The within year trend showed an increase over the three study years. The average density of gloves declined from an initially high level in 2020, when the SARS-CoV-2 virus was thought to be transmitted by contact, to near zero in 2021 and to zero in 2022. Densities of wipes were similar in 2020 and 2021 and higher in 2022. Masks were initially difficult to procure in 2020, and their densities progressively increased during that year reaching a plateau in 2021 with similar densities in 2022. PPE densities were significantly lower in the pedestrian route relative to the traffic and park routes, which were not different from each other. The partial curfews implemented by the Turkish government and the effects of prevention measures taken on the PPE concentration in the streets are discussed along with the importance of waste management practices.
Collapse
Affiliation(s)
- Herdem Aslan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Okan Yılmaz
- Department of Landscape Architecture, Faculty of Architecture and Design, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mark C Benfield
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - S Ahmet Becan
- Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
4
|
Dey S, Samanta P, Dutta D, Kundu D, Ghosh AR, Kumar S. Face masks: a COVID-19 protector or environmental contaminant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93363-93387. [PMID: 37548785 DOI: 10.1007/s11356-023-29063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Face masks, a prime component of personal protective equipment (PPE) items, have become an integral part of human beings to survive under the ongoing COVID-19 pandemic situation. The global population requires an estimated 130 billion face masks and 64 billion gloves/month, while the COVID-19 pandemic has led to the daily disposal of approximately 3.5 billion single-use face masks, resulting in a staggering 14,245,230.63 kg of face mask waste. The improper disposal of face mask wastes followed by its mismanagement is a challenge to the scientists as the wastes create pollution leading to environmental degradation, especially plastic pollution (macro/meso/micro/nano). Each year, an estimated 0.15-0.39 million tons of COVID-19 face mask waste, along with 173,000 microfibers released daily from discarded surgical masks, could enter the marine environment, while used masks have a significantly higher microplastic release capacity (1246.62 ± 403.50 particles/piece) compared to new masks (183.00 ± 78.42 particles/piece). Surgical face masks emit around 59 g CO2-eq greenhouse gas emissions per single use, cloth face masks emit approximately 60 g CO2-eq/single mask, and inhaling or ingesting microplastics (MPs) caused adverse health problems including chronic inflammation, granulomas or fibrosis, DNA damage, cellular damage, oxidative stress, and cytokine secretion. The present review critically addresses the role of face masks in reducing COVID-19 infections, their distribution pattern in diverse environments, the volume of waste produced, degradation in the natural environment, and adverse impacts on different environmental segments, and proposes sustainable remediation options to tackle environmental challenges posed by disposable COVID-19 face masks.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, 735 210, West Bengal, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
5
|
Karthikeyan P, Subagunasekar M, Lenin N, Prabhu K. Abundance, spatial distribution, and chemical characterization of face masks on the beaches of SE Kanyakumari, India. MARINE POLLUTION BULLETIN 2023; 192:115031. [PMID: 37210985 PMCID: PMC10198033 DOI: 10.1016/j.marpolbul.2023.115031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/08/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Personal Protective Equipment (PPE) is a new world of waste during the COVID-19 pandemic. In this baseline study, the occurrence of PPE faces masks were assessed on the eleven beaches of Kanyakumari, India concerning the abundance, spatial distribution, and chemical characterization (ATR-FTIR spectroscopy). A total of 1593 items/m2 of PPE face masks and their mean density of 0.16 PPE/m2, ranging from 0.02 to 0.54 PPE/m2 were determined in the study area. Kanyakumari beach (n = 430 items/m2) has the highest concentration of masks (26.99 %), with a mean density of 0.54 m2 due to recreational, sewage disposal, and tourism activities. This is perhaps the most important study describing the scientific data that focuses on the significant effects of communal activities and accessibility on COVID-19 PPE face mask pollution. It also highlights the need for sufficient management facilities to optimize PPE disposal.
Collapse
Affiliation(s)
- P Karthikeyan
- School of Marine Sciences, Department of Oceanography and Coastal Area Studies Alagappa University, Karaikudi 630 003, Tamil Nadu, India; Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695 581, Kerala, India.
| | - M Subagunasekar
- Centre for Geoinformatics, School of Health Sciences & Rural Development, The Gandhigram Rural Institute, Dindigul 624 302, Tamil Nadu, India
| | - N Lenin
- Department of Physics, Sethu Institute of Technology, Virudhunagar 626 115, Tamil Nadu, India
| | - K Prabhu
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
6
|
Mghili B, De-la-Torre GE, Aksissou M. Assessing the potential for the introduction and spread of alien species with marine litter. MARINE POLLUTION BULLETIN 2023; 191:114913. [PMID: 37068344 DOI: 10.1016/j.marpolbul.2023.114913] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
The introduction and transport of marine invasive species into new environments are a great threat to biodiversity and ecosystem services with potential economic repercussions. There are several routes and mechanisms by which alien species are transported and dispersed in the marine environment (shipping, waterways, and aquaculture). Each year, millions of tons of plastic enter the ocean. The presence of floating marine litter in marine environments provides a substrate for marine organisms and may increase the potential for the transport of alien species. Research on the role of marine litter in the introduction of alien marine species has grown exponentially in recent years. In this study, studies examining the transport and dispersal of alien species by marine litter are reviewed. In this review, we identified 67 alien species associated with marine litter. The most recurrent alien phyla found on marine litter are Arthropoda (29 %), Mollusca (23 %), Bryozoa (19 %), Annelida (7 %) and Cnidaria (5 %). Plastic appears to be more efficient in transporting alien species than by natural means. Their characteristics (buoyancy and persistence) allow them to be widely dispersed throughout all ocean compartments. Thus, plastics may act as a primary vector, carrying organisms to remote areas but can also facilitate the secondary spread of alien species between points of invasion. Despite the growing number of studies on this subject, much work remains to be done to understand the roles of plastics in the introduction of alien species and to develop solutions to mitigate the issue.
Collapse
Affiliation(s)
- Bilal Mghili
- LESCB, URL-CNRST N 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco.
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Mustapha Aksissou
- LESCB, URL-CNRST N 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| |
Collapse
|
7
|
López ADF, De-la-Torre GE, Fernández Severini MD, Prieto G, Brugnoni LI, Colombo CV, Dioses-Salinas DC, Rimondino GN, Spetter CV. Chemical-analytical characterization and leaching of heavy metals associated with nanoparticles and microplastics from commercial face masks and the abundance of personal protective equipment (PPE) waste in three metropolitan cities of South America. MARINE POLLUTION BULLETIN 2023; 191:114997. [PMID: 37148588 DOI: 10.1016/j.marpolbul.2023.114997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
In this study, we surveyed the presence of personal protective equipment (PPE) waste on the streets of Bogotá-Colombia, Lima-Perú, and Mar del Plata-Argentina. Furthermore, this work is also focused on the release capacity of Ag, Cu, and Zn metals associated with nanoparticles, and microplastics (MPs) from textile face masks (TFMs) and disposable face masks. According to our results, an association between low-income areas and PPE waste was found, which may be related to the periodicity of waste collection and economic activity. Polymers, like polypropylene, cotton-polyester, and additives, such as CaCO3, MgO, and Ag/Cu as nanoparticles, were identified. TFMs released high levels of Cu (35,900-60,200 μg·L-1), Zn (2340-2380 μg·L-1), and MPs (4528-10,640 particles/piece). Metals associated with nanoparticles leached by face masks did not present any antimicrobial activity against P. aeruginosa. Our study suggests that TFMs may leach large amounts of polluting nano/micromaterials in aquatic environments with potential toxicological effects on organisms.
Collapse
Affiliation(s)
- A D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina.
| | - G E De-la-Torre
- Universidad San Ignacio de Loyola, Av. La Fontana 501, Lima 12, Lima, Peru
| | - M D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - G Prieto
- Departamento de Ingeniería, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina; IFISUR, Universidad Nacional del Sur - CONICET, Av. Alem 1253, Bahía Blanca, Argentina
| | - L I Brugnoni
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (UNS-CONICET), San Juan 670, 8000 Bahía Blanca, Argentina
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - D C Dioses-Salinas
- Universidad San Ignacio de Loyola, Av. La Fontana 501, Lima 12, Lima, Peru
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria (X5000HUA), Córdoba, Argentina
| | - C V Spetter
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
8
|
Petrescu DC, Rastegari H, Petrescu-Mag IV, Petrescu-Mag RM. Determinants of proper disposal of single-use masks: knowledge, perception, behavior, and intervention measures. PeerJ 2023; 11:e15104. [PMID: 37041977 PMCID: PMC10083004 DOI: 10.7717/peerj.15104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Background Although many studies testify to consumer behavior's role in the context of waste-related sustainability objectives, little research examined what people know, think, and feel about the environmental impacts of their personal protective equipment (PPE) or their behavior towards them, in general. Therefore, the present article complements existing information about the public perceptions, knowledge, and behavior of single-use masks in a context where the pandemic has put increasing pressure on waste management public services. From February to June 2020, municipal solid waste increased ten times in Romania. The study identified the factors that predicted the proper disposal of single-use masks and the measures preferred to prevent or minimize the negative impact of single-use mask waste. Method Data from a representative sample of 705 Romanians were collected using a structured questionnaire. The data were analyzed with SPSS and SmartPLS. The Cochran's Q test was run to determine the existence of differences between percentages of people who preferred various measures. Dunn's test with a Bonferroni correction was used to identify the exact pair of groups where the differences were located. The study utilized structural equation models (SEM) based on at least partial squares with SmartPLS software (3.2.8) to investigate causal links between constructs. The model considered that the dependent variable (environmentally friendly behavior: proper disposal of single-use masks) could be influenced by the knowledge, perception, behavior, and demographics variables. Results The findings indicated that knowledge of the type of material of single-use masks had a direct positive (β = 0.173) and significant effect on their proper disposal. The perception of mask waste impact has a negative and significant (β = -0.153, p < 0.001) impact on the proper disposal of single-use masks. This path coefficient illustrates that the worse the perceived impact of single-use masks on waste management activity, the higher the proper disposal of single-use masks. Gender has a positive (β = 0.115) and significant (p < 0.001) effect on the proper disposal of single-use masks. Conclusions It was concluded that the 5Rs waste management approach should be reconsidered for single-use mask waste. For example, "Reuse" and the classic "Recycle" have limited applications since they may lead to virus transmission and possible infection. "Reducing" the use of single-use masks could have repercussions on one's health. Summing up, the study outlined recommendations for effective interventions for the proper disposal of single-use masks from the perspective of behavioral studies.
Collapse
Affiliation(s)
- Dacinia Crina Petrescu
- Department of Hospitality Services, Faculty of Business, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hamid Rastegari
- Department of Rural Development Management, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Ioan Valentin Petrescu-Mag
- Department of Engineering and Environmental Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Cluj, Romania
| | - Ruxandra Malina Petrescu-Mag
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Department of Environmental Science, Faculty of Environmental Science and Engineering, Babes-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
- Doctoral School “International Relations and Security Studies”, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Costa LL, Rangel DF, Zalmon IR. The presence of COVID-19 face masks in the largest hypersaline lagoon of South America is predicted by urbanization level. MARINE POLLUTION BULLETIN 2023; 189:114746. [PMID: 36857992 PMCID: PMC9941313 DOI: 10.1016/j.marpolbul.2023.114746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 05/23/2023]
Abstract
The inadequate disposal of face masks has caused a widespread presence of COVID-19 litter in the environment. We monitored 10 beach arcs along approximately 15 km of the largest hypersaline lagoon of South America looking for face masks during the lockdown (2021) and in the "new normal" (2022) period. Our working hypothesis is that the probability of finding face masks increases with higher urbanization levels, which was estimated by the Human Modification Metric. Approximately 3 × 10-3 face masks m-2 were found on nine of 10 beaches (90 %) during the lockdown. However, this reduced to 1 × 10-4 face masks m-2 found in eight beaches (80 %) after the lockdown. The probability of finding a face mask was significantly higher as urbanization increased (z = 2.799; p = 0.005). This situation imposes the need for a better waste management and environmental education actions, targeting the reduction of direct littering on coastal ecosystem.
Collapse
Affiliation(s)
- Leonardo Lopes Costa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | | | - Ilana Rosental Zalmon
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Kannan G, Mghili B, De-la-Torre GE, Kolandhasamy P, Machendiranathan M, Rajeswari MV, Saravanakumar A. Personal protective equipment (PPE) pollution driven by COVID-19 pandemic in Marina Beach, the longest urban beach in Asia: Abundance, distribution, and analytical characterization. MARINE POLLUTION BULLETIN 2023; 186:114476. [PMID: 36529014 PMCID: PMC9726691 DOI: 10.1016/j.marpolbul.2022.114476] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 05/13/2023]
Abstract
COVID-19 pandemic has enforced the use of personal protective equipment (PPE, masks and gloves). However, the mismanagement of litter are exacerbating the increasing plastic issue worldwide. In the present study, we sampled discarded PPE in 10 sites along Marina Beach, India. We characterized the litter types by chemical analysis techniques. A total of 1154 COVID-19-associated PPE items were found on Marina beach. The highest number of items were face masks (97.9 %) and the mean PPE density in the sites studied was 4 × 10-3 PPE m-2. The results demonstrate that poor solid waste management and lack of awareness are the main causes of pollution at Marina beach. FTIR spectroscopy revealed that face masks and gloves were principally made of polypropylene and latex, respectively. The FTIR spectra also showed signs of chemical degradation. Our results suggest that plastic pollution is increasing, possibly becoming more impactful to marine biota. Beach management measures were discussed.
Collapse
Affiliation(s)
- Gunasekaran Kannan
- Centre for Aquaculture, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India.
| | - Bilal Mghili
- LESCB, URL-CNRST N 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| | | | - Prabhu Kolandhasamy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, India
| | - Mayakrishnan Machendiranathan
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | | | - Ayyappan Saravanakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamil Nadu, India
| |
Collapse
|