1
|
Farooq M, Shah MY, Gani KM. Utilizing industrial wastewater sludge-derived biochar for enhancing strength and microstructure of soft soil- An infrastructure application of wastewater sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122577. [PMID: 39326079 DOI: 10.1016/j.jenvman.2024.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
This study proposes a waste-to-value approach; specifically focusing on the utilization of industrial wastewater sludge (IWS) derived pyrolytic biochar (PBC) as an alternative to conventional carbon positive soil stabilizing materials. The IWS was subjected to thermogravimetric analysis (TGA) in N2 environment which suggested the pyrolysis temperature of 450 °C for the synthesis of PBC. Five different dosages of PBC by weight were mixed with the soft soil (SS) and unconfined compressive strength (UCS) values were examined across the various curing periods. Test results confirmed that UCS and stiffness values of soil-PBC matrix increased 4-5 and 5-6 times to that of virgin soil respectively. The PBC increased the cation exchange capacity (CEC), point of zero charge (pHpzc), alkalinity, and water holding capacity of the soil thereby assisted to initiate pozzolanic reactions. Various spectroscopic techniques were performed to investigate the strength development mechanism. Free oxide of calcium (CaO) in PBC disturbed the laminated structure of soil, reacted with oxides of silica (SiO2) and other silicates of aluminum thereby densifying the soil-PBC structure. Further, leaching test was performed on soil-PBC matrices to evaluate the environmental viability of the PBC. The statistical significance of the test results was confirmed using the Analysis of Variance (ANOVA) technique. Overall, this study concludes that PBC has the potential to serve as an environmentally friendly alternative to conventional soil stabilizing materials.
Collapse
Affiliation(s)
- Muneeb Farooq
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, 190006, India.
| | - Mohammad Yousuf Shah
- Geotechnical Engineering, Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, 190006, India.
| | - Khalid Muzamil Gani
- Environmental Engineering, Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, 190006, India; Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
2
|
Kumari S, Chowdhry J, Kumar M, Garg MC. Machine learning (ML): An emerging tool to access the production and application of biochar in the treatment of contaminated water and wastewater. GROUNDWATER FOR SUSTAINABLE DEVELOPMENT 2024; 26:101243. [DOI: 10.1016/j.gsd.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
3
|
Bashir M, Hassan NU, Ibrahim M, Ali HM, Tahir MH, Naseem K, Sultana N, Tariq MI, Irfan RM, Zain H, Nadeem M, Tariq AA. Synergistic Interaction during Copyrolysis of Soybean Straw and Tire Waste: Improving Emissions and Product Quality. ACS OMEGA 2024; 9:32697-32705. [PMID: 39100299 PMCID: PMC11292629 DOI: 10.1021/acsomega.4c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024]
Abstract
This study explores copyrolysis of soybean straw (SS) with hydrogen-rich tire waste (TW) to enhance pyrolytic product quality and reduce pollutant emissions. Addition of TW increased SS biomass conversion from 67.19 to 72.46% and decreased coke/residue formation from 32.81 to 27.54%. The activation energy dropped to 121.84 kJ/mol from 160.73 kJ/mol (as calculated by the Kissinger-Akahira-Sunose method) and 122.78 kJ/mol from 159.76 kJ/mol (as calculated by the Ozawa-Flynn-Wall method). Thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy (TG-FTIR) showed lowered CO2, NO2, and SO2 emissions (5.58, 5.72, 3.38) compared to conventional SS pyrolysis (18.38, 11.55, 12.37). Yields of value-added chemicals (phenols, olefins, aromatics) increased (32.38, 22.17, 30.18%) versus conventional SS pyrolysis (23.56, 13.78, 20.36%). Pyrolysis gas chromatography-mass spectrometry (Py/GC-MS) analysis reveals that the addition of TW leads to a decrease in the production of oxygenates and polycyclic aromatic hydrocarbons, reducing their yields to 8.96 and 7.67%, respectively, down from 19.37 and 14.37%. Simultaneously, it enhances the yields of olefins, aromatics, phenols, and aliphatic hydrocarbons to 23.38, 26.78, 26.17, and 25.78%, respectively, compared to 15.37%, 15.29, 18.36, and 17.25%, respectively, in the absence of TW. In summary, copyrolysis of TW with SS improves product quality and reduces pollutant emissions, marking a significant research contribution.
Collapse
Affiliation(s)
- Maryam Bashir
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Najam Ul Hassan
- Department
of Physics, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Muhammad Ibrahim
- Department
of Environmental Sciences, Government College
University Faisalabad, Faisalabad 38000, Pakistan
| | - Hayssam M. Ali
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassir Hussain Tahir
- Research
Faculty of Agriculture; Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido 060-8589, 060-0811, Japan
| | - Khalida Naseem
- Department
of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 510000, Pakistan
| | - Nargis Sultana
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | | | | | - Hina Zain
- Department
of Chemistry, The Superior University, Lahore 51000, Pakistan
| | - Muhammad Nadeem
- Department
of Chemistry, The Superior University, Lahore 51000, Pakistan
| | - Asad Ali Tariq
- Department
of Chemistry, The Superior University, Lahore 51000, Pakistan
| |
Collapse
|
4
|
Satpati GG, Devi A, Kundu D, Dikshit PK, Saravanabhupathy S, Rajlakshmi, Banerjee R, Chandra Rajak R, Kamli MR, Lee SY, Kim JW, Davoodbasha M. Synthesis, delineation and technological advancements of algae biochar for sustainable remediation of the emerging pollutants from wastewater-a review. ENVIRONMENTAL RESEARCH 2024; 258:119408. [PMID: 38876417 DOI: 10.1016/j.envres.2024.119408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The use of algae for value-added product and biorefining applications is enchanting attention among researchers in recent years due to its remarkable photosynthetic ability, adaptability, and capacity to accumulate lipids and carbohydrates. Algae biomass, based on its low manufacturing costs, is relatively renewable, sustainable, environmentally friendly and economical in comparison with other species. High production rate of algae provides a unique opportunity for its conversion to biochar with excellent physicochemical properties, viz. high surface area and pore volume, high adsorption capacity, abundant functional groups over surface, etc. Despite several potential algal-biochar, a detailed study on its application for removal of emerging contaminants from wastewater is limited. Therefore, this technical review is being carried out to evaluate the specific elimination of inorganic and organic pollutants from wastewater, with a view to assessing adsorption performances of biochar obtained from various algae species. Species-specific adsorption of emerging pollutants from wastewater have been discussed in the present review. The promising methods like pyrolysis, gasification, dry and wet torrefaction for the production of algae biochar are highlighted. The strategies include chemical and structural modifications of algae biochar for the removal of toxic contaminants have also been considered in the current work. The overall aim of this review is to confer about the synthesis, technological advancements, delineation and application of algae biochar for the treatment of wastewater.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, 19 Rajkumar Chakraborty Sarani, Kolkata 700009, West Bengal, India.
| | - Anuradha Devi
- Department of Environmental Microbiology (DEM), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University, Amaravati, Andhra Pradesh 522240, India
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur-522502, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | | | - Rajlakshmi
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Rintu Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Rajiv Chandra Rajak
- Department of Botany, Marwari College, Ranchi University, Ranchi 834008, India
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sang-Yul Lee
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Jung-Wan Kim
- Centre for Surface Technology and Applications, Korea Aerospace University, Goyang-si, Republic of Korea
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India; Crescent Global Outreach Mission (CGOM), B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India.
| |
Collapse
|
5
|
Çakman G. Pyrolysis of Euphorbia Rigida: A study on thermal characterizations, kinetics, thermodynamics via TG-FTIR analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120835. [PMID: 38581897 DOI: 10.1016/j.jenvman.2024.120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Euphorbia Rigida (E. Rigida), a lignocellulosic biomass with low ash content, is a suitable feedstock for pyrolysis. This work investigated the physicochemical characteristics and thermokinetic analysis of E. Rigida pyrolysis by using isoconversional and master plots methods. Ultimate and proximate analyses and oxygen bomb calorimeter were used to determine the physicochemical parameters. The activation energies were calculated using model-free methods (KAS, Friedman and Starink) and were found as 184, 178 and 185 kJ/mol, respectively. Using Fraser-Suzuki deconvolution, pseudo-components were also calculated and the active pyrolysis region was divided into three zones. The master plots showed that reaction order mechanisms (Fn) were effective in Zone I, and diffusion mechanisms (Dn) were well matched in Zone II and Zone III. The thermodynamic parameters (ΔH, ΔG and ΔS) were calculated and according to these results, E. Rigida pyrolysis was an endothermic and non-spontaneous process.
Collapse
Affiliation(s)
- Gülce Çakman
- Ondokuz Mayıs University, Engineering Faculty, Chemical Engineering Department, 55139, Kurupelit, Samsun, Turkey.
| |
Collapse
|
6
|
Siatecka A, Oleszczuk P. The effect of biotransformation of sewage sludge- and willow-derived biochars by horseradish peroxidase on total and freely dissolved polycyclic aromatic hydrocarbon content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165210. [PMID: 37391151 DOI: 10.1016/j.scitotenv.2023.165210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
This study analyzed the effect of enzymatic aging (horseradish peroxidase) of biochars on their content of solvent extractable (Ctot) and freely dissolved (Cfree) polycyclic aromatic hydrocarbons (PAHs). Physicochemical properties and phytotoxicity of pristine and aged biochars were also compared. The study used biochars obtained at 500 or 700 °C from sewage sludges (SSLs) or willow. Compared to SSL-derived biochars, willow-derived biochars were more susceptible to enzymatic oxidation. Aging increased the specific surface area and pore volume of most SSL-derived biochars. An opposite direction, however, was found in the willow-derived biochars. Low-temperature biochars, regardless of their feedstock, underwent physical changes, such as removal of labile ash components or degradation of aromatic structures. The enzyme caused an increase in the content of Ctot light PAHs in biochars (by 34-3402 %) and heavy PAHs (≥4 rings) in the low-temperature SSL-derived biochars (by 46-713 %). In turn, the content of Cfree PAHs decreased in aged SSL-derived biochars (by 32-100 %). In the willow-derived biochars the bioavailability of acenaphthene increased (by 337-669 %), while the immobilization degree of some PAHs was lower (25-70 %) compared to the SSL-derived biochars (32-83 %). Nevertheless, aging positively affected the ecotoxicological properties of all biochars by increasing their stimulation effects or removing their phytotoxic effects on both Lepidium sativum seed germination and root growth. Significant relationships between the changes in Cfree PAH content, pH and salinity of SSL-derived biochars and seed germination/root growth inhibition were found. The study demonstrates that the risk associated with application of SSL-derived biochars, regardless of the type of SSL and pyrolysis temperature, can be lower in terms of Cfree PAHs than in the case of willow-derived biochars. Regarding to Ctot PAHs, high-temperature SSL-derived biochars are safer than low-temperature ones. In the case of application of high-temperature SSL-derived biochars, these with moderate alkalinity and salinity will not bring risks for plants.
Collapse
Affiliation(s)
- Anna Siatecka
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 3 Maria Curie-Sklodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
7
|
Godvin Sharmila V, Kumar Tyagi V, Varjani S, Rajesh Banu J. A review on the lignocellulosic derived biochar-based catalyst in wastewater remediation: Advanced treatment technologies and machine learning tools. BIORESOURCE TECHNOLOGY 2023; 387:129587. [PMID: 37549718 DOI: 10.1016/j.biortech.2023.129587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Wastewater disposal in the ecosystem affects aquatic and human life, which necessitates the removal of the contaminants. Eliminating wastewater contaminants using biochar produced through the thermal decomposition of lignocellulosic biomass (LCB) is sustainable. Due to its high specific surface area, porous structure, oxygen functional groups, and low cost, biochar has emerged as an alternate contender in catalysis. Various innovative advanced technologies were combined with biochar for effective wastewater treatment. This review examines the use of LCB for the synthesis of biochar along with its activation methods. It also elaborates on using advanced biochar-based technologies in wastewater treatment and the mechanism for forming oxidizing species. The research also highlights the use of machine learning in pollutant removal and identifies the obstacles of biochar-based catalysts in both real-time and cutting-edge technologies. Probable and restrictions for further exploration are discussed.
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Mar Ephraem College of Engineering and Technology, Marthandam 629171, Tamil Nadu, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee 247667, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India.
| |
Collapse
|
8
|
Chen S, Hao HC, Zhang SZ, Jiang H. Selectively retaining nutrients in biochar in magnesium added two-zone staged copyrolysis of blue algae and corn gluten wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117583. [PMID: 36848804 DOI: 10.1016/j.jenvman.2023.117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The disposal of blue algae (BA) and corn gluten (CG) wastes and the simultaneous recovery of abundant phosphorus (P) and nitrogen (N) by pyrolysis to obtain biochars with high fertility is a promising strategy. However, pyrolysis of BA or CG alone by a conventional reactor cannot reach the target. Herein, we propose a novel MgO-enhanced N and P recovery method by designing a two-zone staged pyrolysis reactor to highly efficiently recover N and P with easily available plant forms in BA and CG. The results show that a 94.58% total phosphorus (TP) retention rate was achieved by means of the special two-zone staged pyrolysis method, in which the effective P (Mg2PO4(OH) and R-NH-P) accounted for 52.9% of TP, while the total nitrogen (TN) reached 4.1 wt%. In this process, stable P was formed first at 400 °C to avoid rapid volatilization and then to form hydroxyl P at 800 °C. Meanwhile, Mg-BA char in the lower zone can efficiently absorb N-containing gas generated by the upper CG, forming dispersible N. This work is of great significance for improving the green utilization value of P and N in BA and CG.
Collapse
Affiliation(s)
- Shuo Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong-Chao Hao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Zhe Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
9
|
Current Challenges and Perspectives for the Catalytic Pyrolysis of Lignocellulosic Biomass to High-Value Products. Catalysts 2022. [DOI: 10.3390/catal12121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lignocellulosic biomass is an excellent alternative of fossil source because it is low-cost, plentiful and environmentally friendly, and it can be transformed into biogas, bio-oil and biochar through pyrolysis; thereby, the three types of pyrolytic products can be upgraded or improved to satisfy the standard of biofuel, chemicals and energy materials for industries. The bio-oil derived from direct pyrolysis shows some disadvantages: high contents of oxygenates, water and acids, easy-aging and so forth, which restrict the large-scale application and commercialization of bio-oil. Catalytic pyrolysis favors the refinement of bio-oil through deoxygenation, cracking, decarboxylation, decarbonylation reactions and so on, which could occur on the specified reaction sites. Therefore, the catalytic pyrolysis of lignocellulosic biomass is a promising approach for the production of high quality and renewable biofuels. This review gives information about the factors which might determine the catalytic pyrolysis output, including the properties of biomass, operational parameters of catalytic pyrolysis and different types of pyrolysis equipment. Catalysts used in recent research studies aiming to explore the catalytic pyrolysis conversion of biomass to high quality bio-oil or chemicals are discussed, and the current challenges and future perspectives for biomass catalytic pyrolysis are highlighted for further comprehension.
Collapse
|