1
|
Giannattasio A, Iuliano V, Oliva G, Giaquinto D, Capacchione C, Cuomo MT, Hasan SW, Choo KH, Korshin GV, Barceló D, Belgiorno V, Grassi A, Naddeo V, Buonerba A. Micro(nano)plastics from synthetic oligomers persisting in Mediterranean seawater: Comprehensive NMR analysis, concerns and origins. ENVIRONMENT INTERNATIONAL 2024; 190:108839. [PMID: 38943925 DOI: 10.1016/j.envint.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
The presence in seawater of low-molecular-weight polyethylene (PE) and polydimethylsiloxane (PDMS), synthetic polymers with high chemical resistance, has been demonstrated in this study for the first time by developing a novel methodology for their recovery and quantification from surface seawater. These synthetic polymer debris (SPD) with very low molecular weights and sizes in the nano- and micro-metre range have escaped conventional analytical methods. SPD have been easily recovered from water samples (2 L) through filtration with a nitrocellulose membrane filter with a pore size of 0.45 μm. Dissolving the filter in acetone allowed the isolation of the particulates by centrifugation followed by drying. The isolated SPD were analysed by 1H nuclear magnetic resonance spectroscopy (1H NMR), identifying PE and PDMS. These polymers are thus persisting on seawater because of their low density and the ponderal concentrations were quantified in mg/m3. This method was used in an actual case study in which 120 surface seawater samples were collected during two sampling campaigns in the Mediterranean Sea (from the Gulf of Salerno to the Gulf of Policastro in South Italy). The developed analytical protocol allowed achieving unprecedented simplicity, rapidity and sensitivity. The 1H and 13C NMR structural analysis of the PE debris indicates the presence of oxidised polymer chains with very low molecular weights. Additionally, the origin of those low molecular weight polymers was investigated by analysing influents and effluents from a wastewater treatment plant (WWTP) in Salerno as a hot spot for the release of SPD: the analysis indicates the presence of low molecular weight polymers compatible with wax-PE, widely used for coating applications, food industry, cosmetics and detergents. Moreover, the origin of PDMS debris found in surface seawater can be ascribed to silicone-based antifoamers and emulsifiers.
Collapse
Affiliation(s)
- Alessia Giannattasio
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Veronica Iuliano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Domenico Giaquinto
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Carmine Capacchione
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Maria Teresa Cuomo
- Department of Economics and Statistics, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University (KNU), 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98105-2700, United States
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120 Almeria, Spain
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Alfonso Grassi
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
| | - Antonio Buonerba
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
| |
Collapse
|
2
|
Bartnick R, Rodionov A, Oster SDJ, Löder MGJ, Lehndorff E. Plastic Quantification and Polyethylene Overestimation in Agricultural Soil Using Large-Volume Pyrolysis and TD-GC-MS/MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13047-13055. [PMID: 38977269 PMCID: PMC11270980 DOI: 10.1021/acs.est.3c10101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
Quantification of microplastics in soil is needed to understand their impact and fate in agricultural areas. Often, low sample volume and removal of organic matter (OM) limit representative quantification. We present a method which allows simultaneous quantification of microplastics in homogenized, large environmental samples (>1 g) and tested polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) (200-400 μm) overestimation by fresh and diagenetically altered OM in agricultural soils using a new combination of large-volume pyrolysis adsorption with thermal desorption-gas chromatography-tandem mass spectrometry (TD-GC-MS/MS). Characteristic MS/MS profiles for PE, PET, and PS were derived from plastic pyrolysis and allowed for a new mass separation of PET. Volume-defined standard particles (125 × 125 × 20 μm3) were developed with the respective weight (PE: 0.48 ± 0.12, PET: 0.50 ± 0.10, PS: 0.31 ± 0.08 μg), which can be spiked into solid samples. Diagenetically altered OM contained compounds that could be incorrectly identified as PE and suggest a mathematical correction to account for OM contribution. With a standard addition method, we quantified PS, PET, and PEcorrected in two agricultural soils. This provides a base to simultaneously quantify a variety of microplastics in many environmental matrices and agricultural soil.
Collapse
Affiliation(s)
- Ryan Bartnick
- Soil
Ecology, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95448 Bayreuth, Germany
| | - Andrei Rodionov
- Soil
Ecology, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95448 Bayreuth, Germany
| | | | - Martin G. J. Löder
- Animal
Ecology I, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Eva Lehndorff
- Soil
Ecology, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95448 Bayreuth, Germany
| |
Collapse
|
3
|
Xie J, Gowen A, Xu W, Xu J. Analysing micro- and nanoplastics with cutting-edge infrared spectroscopy techniques: a critical review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2177-2197. [PMID: 38533677 DOI: 10.1039/d3ay01808c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The escalating prominence of micro- and nanoplastics (MNPs) as emerging anthropogenic pollutants has sparked widespread scientific and public interest. These minuscule particles pervade the global environment, permeating drinking water and food sources, prompting concerns regarding their environmental impacts and potential risks to human health. In recent years, the field of MNP research has witnessed the development and application of cutting-edge infrared (IR) spectroscopic instruments. This review focuses on the recent application of advanced IR spectroscopic techniques and relevant instrumentation to analyse MNPs. A comprehensive literature search was conducted, encompassing articles published within the past three years. The findings revealed that Fourier transform infrared (FTIR) spectroscopy stands as the most used technique, with focal plane array FTIR (FPA-FTIR) representing the cutting edge in FTIR spectroscopy. The second most popular technique is quantum cascade laser infrared (QCL-IR) spectroscopy, which has facilitated rapid analysis of plastic particles. Following closely is optical photothermal infrared (O-PTIR) spectroscopy, which can furnish submicron spatial resolution. Subsequently, there is atomic force microscopy-based infrared (AFM-IR) spectroscopy, which has made it feasible to analyse MNPs at the nanoscale level. The most advanced IR instruments identified in articles covered in this review were compared. Comparison metrics encompass substrates/filters, data quality, spatial resolution, data acquisition speed, data processing and cost. The limitations of these IR instruments were identified, and recommendations to address these limitations were proposed. The findings of this review offer valuable guidance to MNP researchers in selecting suitable instrumentation for their research experiments, thereby facilitating advancements in research aimed at enhancing our understanding of the environmental and human health risks associated with MNPs.
Collapse
Affiliation(s)
- Junhao Xie
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Aoife Gowen
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Wei Xu
- Department of Life Sciences, Center for Coastal Studies, College of Sciences, Texas A&M University-Corpus Christi, USA
| | - Junli Xu
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|