1
|
Deutsch JM, Demko AM, Jaiyesimi OA, Foster G, Kindler A, Pitts KA, Vekich T, Williams GJ, Walker BK, Paul VJ, Garg N. Metabolomic profiles of stony coral species from the Dry Tortugas National Park display inter- and intraspecies variation. mSystems 2024; 9:e0085624. [PMID: 39560405 DOI: 10.1128/msystems.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Coral reefs are experiencing unprecedented loss in coral cover due to increased incidence of disease and bleaching events. Thus, understanding mechanisms of disease susceptibility and resilience, which vary by species, is important. In this regard, untargeted metabolomics serves as an important hypothesis-building tool enabling the delineation of molecular factors underlying disease susceptibility or resilience. In this study, we characterize metabolomes of four species of visually healthy stony corals, including Meandrina meandrites, Orbicella faveolata, Colpophyllia natans, and Montastraea cavernosa, collected at least a year before stony coral tissue loss disease reached the Dry Tortugas, Florida, and demonstrate that both symbiont and host-derived biochemical pathways vary by species. Metabolomes of Meandrina meandrites displayed minimal intraspecies variability and the highest biological activity against coral pathogens when compared to other species in this study. The application of advanced metabolite annotation methods enabled the delineation of several pathways underlying interspecies variability. Specifically, endosymbiont-derived vitamin E family compounds, betaine lipids, and host-derived acylcarnitines were among the top predictors of interspecies variability. Since several metabolite features that contributed to inter- and intraspecies variation are synthesized by the endosymbiotic Symbiodiniaceae, which could be a major source of these compounds in corals, our data will guide further investigations into these Symbiodiniaceae-derived pathways. IMPORTANCE Previous research profiling gene expression, proteins, and metabolites produced during thermal stress have reported the importance of endosymbiont-derived pathways in coral bleaching resistance. However, our understanding of interspecies variation in these pathways among healthy corals and their role in diseases is limited. We surveyed the metabolomes of four species of healthy corals with differing susceptibilities to the devastating stony coral tissue loss disease and applied advanced annotation approaches in untargeted metabolomics to determine the interspecies variation in host and endosymbiont-derived pathways. Using this approach, we propose the survey of immune markers such as vitamin E family compounds, acylcarnitines, and other metabolites to infer their role in resilience to coral diseases. As time-resolved multi-omics datasets are generated for disease-impacted corals, our approach and findings will be valuable in providing insight into the mechanisms of disease resistance.
Collapse
Affiliation(s)
- Jessica M Deutsch
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Alyssa M Demko
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Olakunle A Jaiyesimi
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gabriel Foster
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Adelaide Kindler
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kelly A Pitts
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Tessa Vekich
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Gareth J Williams
- School of Ocean Sciences, Bangor University, Anglesey, United Kingdom
| | - Brian K Walker
- GIS and Spatial Ecology Laboratory, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, Florida, USA
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Neha Garg
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Smith SJ, Cummins SF, Motti CA, Wang T. A mass spectrometry database for the identification of marine animal saponin-related metabolites. Anal Bioanal Chem 2024; 416:6893-6907. [PMID: 39387871 PMCID: PMC11579115 DOI: 10.1007/s00216-024-05586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Saponins encompass a diverse group of naturally occurring glycoside molecules exhibiting amphiphilic properties and a broad range of biological activities. There is a resurgence of interest in those saponins produced by marine organisms based on their potential therapeutic benefits, application in food products and most recently their potential involvement in intra- and inter-species chemical communication. The continual advancements in liquid chromatography techniques and mass spectrometry technologies have allowed for greater detection rates, as well as improved isolation and elucidation of saponins. These factors have significantly contributed to the expansion in the catalogue of known saponin structures isolated from marine invertebrates; however, there currently exists no specific chemical library resource to accelerate the discovery process. In this study, a Marine Animal Saponin Database (MASD v1.0) has been developed to serve as a valuable chemical repository for known marine saponin-related data, including chemical formula, molecular mass and biological origin of nearly 1000 secondary metabolites associated with saponins produced by marine invertebrates. We demonstrate its application with an exemplar asteroid extract (Acanthaster cf. solaris, also known as crown-of-thorns starfish; COTS), identifying saponins from the MASD v1.0 that have been previously reported from COTS, as well as 21 saponins isolated from multiple other related asteroid species. This database will help facilitate future research endeavours, aiding researchers in exploring the vast chemical diversity of saponins produced by marine organisms and providing ecological insights, and the realisation of their potential for various applications, including as pharmaceuticals.
Collapse
Affiliation(s)
- Stuart J Smith
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
| | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, 4810, Australia
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| |
Collapse
|
3
|
Webb M, Clements M, Selvakumaraswamy P, McLaren E, Byrne M. Chemosensory behaviour of juvenile crown-of-thorns sea star ( Acanthaster sp.), attraction to algal and coral food and avoidance of adult conspecifics. Proc Biol Sci 2024; 291:20240623. [PMID: 38807518 DOI: 10.1098/rspb.2024.0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Intraspecific and habitat-mediated responses to chemical cues play key roles in structuring populations of marine species. We investigated the behaviour of herbivorous-stage juvenile crown-of-thorns sea stars (COTS; Acanthaster sp.) in flow-through choice chambers to determine if chemical cues from their habitat influence movement and their transition to become coral predators. Juveniles at the diet transition stage were exposed to cues from their nursery habitat (coral rubble-crustose coralline algae (CCA)), live coral and adult COTS to determine if waterborne cues influence movement. In response to CCA and coral as sole cues, juveniles moved towards the cue source and when these cues were presented in combination, they exhibited a preference for coral. Juveniles moved away from adult COTS cues. Exposure to food cues (coral, CCA) in the presence of adult cues resulted in variable responses. Our results suggest a feedback mechanism whereby juvenile behaviour is mediated by adult chemical cues. Cues from the adult population may deter juveniles from the switch to corallivory. As outbreaks wane, juveniles released from competition may serve as a proximate source of outbreaks, supporting the juveniles-in-waiting hypothesis. The accumulation of juveniles within the reef infrastructure is an underappreciated potential source of COTS outbreaks that devastate coral reefs.
Collapse
Affiliation(s)
- M Webb
- School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales, Australia
| | - M Clements
- School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales, Australia
| | - P Selvakumaraswamy
- School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales, Australia
| | - E McLaren
- School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales, Australia
| | - M Byrne
- School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Gorman D, Beale DJ, Crosswell J, Stephenson SA, Shah RM, Hillyer KE, Steven ADL. Multiple-biomarkers show the importance of blue carbon to commercially important fishery species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163162. [PMID: 37030372 DOI: 10.1016/j.scitotenv.2023.163162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/01/2023]
Abstract
Coastal blue carbon ecosystems (BCE) support nearshore food webs and provide habitat for many commercially important fish and crustacean species. However, the complex links between catchment vegetation and the carbon food-base of estuarine systems are difficult to disern. We employed a multi-biomarker approach (stable isotope ratios - δ13C and δ15N, fatty acid trophic markers - FATMs and metabolomics - central carbon metabolism metabolites) to test links between estuarine vegetation and the food sources available to commercially important crabs and fish occurring within the river systems of the near-pristine eastern coastline of the Gulf of Carpentaria, Australia. Stable isotope analysis confirmed the dietary importance of fringing macrophytes to consumer diet, but showed that this is modulated by their dominance along the riverbank. FATMs indicative of specific food sources further confirmed the differences among upper intertidal macrophytes (driven by concentrations of 16: 1ω7, 18:1ω9, 18:2ω6, 18:3ω3 & 22.0) and seagrass (driven by 18:2ω6, 18:3ω3). These dietary patterns were also reflected in the concentration of central carbon metabolism metabolites. Overall, our study demonstrates the congruence of different biomarker approaches to resolve biochemical links between blue carbon ecosystems and important nekton species, and provides fresh insights into the pristine tropical estuaries of northern Australia.
Collapse
Affiliation(s)
- Daniel Gorman
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Indian Ocean Marine Research Centre, Crawley, Australia.
| | - David J Beale
- CSIRO, Ecoscience Precinct, Dutton Park, QLD, Australia
| | | | | | - Rohan M Shah
- CSIRO, Ecoscience Precinct, Dutton Park, QLD, Australia
| | | | | |
Collapse
|