1
|
Yang S, Liu B, Wang L, Duran R. Dispatched microbial community assembly processes driving ecological succession during phytostabilization of mercury-rich tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125376. [PMID: 39581369 DOI: 10.1016/j.envpol.2024.125376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Phytostabilization is an important way for the remediation of mine tailings, but the associated microbial processes and community succession remain largely unknown. In this study, we investigated the assembly mechanisms maintaining the core and satellite subcommunities diversity during phytostabilizaion of a mercury-rich mine tailings. The contents of total Hg and methylmercury decreased with a concomitant increase of total and available phosphorus content along the successive remediation stages. Microbial community composition, profiled by 16S rRNA gene sequencing, revealed amplicon sequence variants (ASVs) that were separated according to their abundance within either the core community or the satellite community. Community dynamics analysis showed that alpha diversity indices increased for the core community while decreased for the satellite community. Both satellite and core communities were mainly driven by stochastic drift process, and homogeneous selection was relatively higher in shaping the core community organization. The core community included ASVs affiliated to Proteobacteria, Crenarchaeota, Bacteroidota, Verrucomicrobiota, Acidobacteriota, and Myxococcota phyla, which were driven primarily by heterogeneous selection and drift. The satellite community included ASVs affiliated to Acidobacteriota, Ktedonobacteria, Anaerolineae and Verrucomicrobiota phyla, which were mainly influenced by heterogeneous selection. Nineteen taxa and one taxon were identified as keystone taxa for the satellite and core communities respectively. This study provides important insights on the assemble rules within the core and satellite communities, and theoretical guidance for further ecological restoration and management during microbial remediation of metal-mined derelict land.
Collapse
Affiliation(s)
- Shengxiang Yang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Bang Liu
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| | - Lu Wang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
2
|
Huang X, Hong Y, Li Q, Liu Z, Liu K. Characteristics and driving forces of the soil microbial community during 35 years of natural restoration in abandoned areas of the Daxin manganese mine, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:413. [PMID: 39230730 DOI: 10.1007/s10653-024-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
The restoration of mining wastelands, particularly in karst regions contaminated by heavy metals, is an environmental challenge in need of urgent attention. Soil microbes play a vital role in nutrient cycling and ecosystem recovery, yet the long-term evolution of soil microbial communities in such settings remains poorly understood. This study explored the dynamics and influencing factors of soil microbial communities during 35 years of natural restoration in abandoned manganese (Mn) mine areas in Guangxi Province, China. The results revealed that the concentrations of Mn, Cd, Zn, and Cu were significantly (p < 0.05) reduced by 80.4-85.3%, 55.3-70.0%, 21.0-38.1%, and 29.4-49.4%, respectively, in the mid-late restoration periods (R19 and R35) compared with R1. The α diversities of the bacterial and fungal communities significantly increased in the middle-late restoration periods (R19 and R35), indicating increased microbial diversity as restoration progressed. The bacterial community structure exhibited more pronounced changes than did the fungal community structure, with significant shifts observed in dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteriota, and Ascomycota. Notably, the relative abundances of Rhizobiales, Burkholderiales, and Hypocreales increased gradually with succession. Co-occurrence network analysis revealed that bacterial interactions became stronger over time, whereas interactions between bacteria and fungi weakened. Mantel tests and partial least squares path modeling (PLS‒PM) identified soil pH, heavy metals (Mn, Cd, Zn, and Cu), and nutrients (SOM and TN) as key drivers shaping the microbial community composition. These factors were more strongly correlated with bacterial communities than with fungal communities, underscoring the different responses of microbial groups to environmental changes during natural restoration. These findings enhance our understanding of the ecological processes governing microbial community succession in heavy metal-contaminated soils undergoing natural restoration.
Collapse
Affiliation(s)
- Xiaofang Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China
| | - Yanyan Hong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China
| | - Quanzeng Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China
| | - Zongbao Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China.
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China.
| |
Collapse
|
3
|
Han L, Li L, Xu Y, Xu X, Ye W, Kang Y, Zhen F, Peng X. Short-term high-temperature pretreated compost increases its application value by altering key bacteria phenotypes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 180:135-148. [PMID: 38564914 DOI: 10.1016/j.wasman.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Short-term high-temperature pretreatment can effectively shorten the maturity period of organic waste composting and improve the fertilizer efficiency and humification degree of products. To investigate the effect and mechanism of the end products on the saline-alkali soil improvement and plant growth, the short-term high-temperature pretreatment composting (SHC) and traditional composting (STC) were separately blended with saline-alkali soil in a ratio of 0-40 % to establish a soil-fertilizer blended matrix for cultivating Lolium perenne L. The pot experiments combined with principal component analysis showed Lolium perenne L. planted in 20 % SHC-blended saline-alkali soil had the best growth effect, and its biomass, chlorophyll content, and plant height were 109-113 % higher than STC. The soil physicochemical property analysis showed that SHC and STC increased the soil nutrient content, humification degree, and enzyme activity at any blending ratio. The microbial analysis showed that 20 % SHC in the saline-alkali soil stimulated the growth of functional microorganisms and the addition of SHC promoted the sulfur cycle, nitrogen fixation, and carbon metabolism in the soil-plant system. The correlation analysis showed that pH; nutrient contents; and urease, catalase, sucrase, and phosphatase activities in the saline-alkali soil were significantly correlated with plant growth indexes (p < 0.05). Georgenia and norank_f__Fodinicurvataceae had a stronger correlation with four types of enzyme activities (p < 0.01). SHC improved the saline-alkali soil and promoted plant growth by adjusting soil pH, increasing soil nutrients, and influencing soil enzyme activity and dominant flora. This study provides a theoretical basis for applying SHC products in soil improvement.
Collapse
Affiliation(s)
- Linpei Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Lei Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Yun Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xinyi Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Wenjie Ye
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanji Kang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xuya Peng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
4
|
Pan Y, Shi J, Li J, Zhang R, Xue Y, Liu Y. Regulatory Mechanism through Which Old Soybean Leaves Respond to Mn Toxicity Stress. Int J Mol Sci 2024; 25:5341. [PMID: 38791379 PMCID: PMC11120821 DOI: 10.3390/ijms25105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Manganese (Mn) is a heavy metal that can cause excessive Mn poisoning in plants, disrupting microstructural homeostasis and impairing growth and development. However, the specific response mechanisms of leaves to Mn poisoning have not been fully elucidated. This study revealed that Mn poisoning of soybean plants resulted in yellowing of old leaves. Physiological assessments of these old leaves revealed significant increases in the antioxidant enzymes activities (peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)) and elevated levels of malondialdehyde (MDA), proline, indoleacetic acid (IAA), and salicylic acid (SA), under 100 μM Mn toxicity. Conversely, the levels of abscisic acid (ABA), gibberellin 3 (GA3), and jasmonic acid (JA) significantly decreased. The Mn content in the affected leaves significantly increased, while the levels of Ca, Na, K, and Cu decreased. Transcriptome analysis revealed 2258 differentially expressed genes in the Mn-stressed leaves, 744 of which were upregulated and 1514 were downregulated; these genes included genes associated with ion transporters, hormone synthesis, and various enzymes. Quantitative RT-PCR (qRT-PCR) verification of fifteen genes confirmed altered gene expression in the Mn-stressed leaves. These findings suggest a complex gene regulatory mechanism under Mn toxicity and stress, providing a foundation for further exploration of Mn tolerance-related gene regulatory mechanisms in soybean leaves. Using the methods described above, this study will investigate the molecular mechanism of old soybean leaves' response to Mn poisoning, identify key genes that play regulatory roles in Mn toxicity stress, and lay the groundwork for cultivating high-quality soybean varieties with Mn toxicity tolerance traits.
Collapse
Affiliation(s)
- Yuhu Pan
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianning Shi
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianyu Li
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rui Zhang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
5
|
Wang H, Liu H, Su R, Chen Y. Phytostabilization of Heavy Metals and Fungal Community Response in Manganese Slag under the Mediation of Soil Amendments and Plants. TOXICS 2024; 12:333. [PMID: 38787112 PMCID: PMC11125594 DOI: 10.3390/toxics12050333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The addition of soil amendments and plants in heavy metal-contaminated soil can result in a significant impact on physicochemical properties, microbial communities and heavy metal distribution, but the specific mechanisms remain to be explored. In this study, Koelreuteria paniculata was used as a test plant, spent mushroom compost (SMC) and attapulgite (ATP) were used as amendments, and manganese slag was used as a substrate. CK (100% slag), M0 (90% slag + 5% SMC + 5% ATP) and M1 (90% slag + 5% SMC + 5% ATP, planting K. paniculata) groups were assessed in a pilot-scale experiment to explore their different impacts on phytoremediation. The results indicated that adding the amendments significantly improved the pH of the manganese slag, enhancing and maintaining its fertility and water retention. Adding the amendments and planting K. paniculata (M1) significantly reduced the bioavailability and migration of heavy metals (HMs). The loss of Mn, Pb and Zn via runoff decreased by 15.7%, 8.4% and 10.2%, respectively, compared to CK. K. paniculata recruited and enriched beneficial fungi, inhibited pathogenic fungi, and a more stable fungal community was built. This significantly improved the soil quality, promoted plant growth and mitigated heavy metal toxicity. In conclusion, this study demonstrated that the addition of SMC-ATP and planting K. paniculata showed a good phytostabilization effect in the manganese slag and further revealed the response process of the fungal community in phytoremediation.
Collapse
Affiliation(s)
| | | | | | - Yonghua Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (H.L.)
| |
Collapse
|
6
|
Li R, Yao J, Liu J, Sunahara G, Duran R, Xi B, El-Saadani Z. Bioindicator responses to extreme conditions: Insights into pH and bioavailable metals under acidic metal environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120550. [PMID: 38537469 DOI: 10.1016/j.jenvman.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Acid mine drainage (AMD) caused environmental risks from heavy metal pollution, requiring treatment methods such as chemical precipitation and biological treatment. Monitoring and adapting treatment processes was crucial for success, but cost-effective pollution monitoring methods were lacking. Using bioindicators measured through 16S rRNA was a promising method to assess environmental pollution. This study evaluated the effects of AMD on ecological health using the ecological risk index (RI) and the Risk Assessment Code (RAC) indices. Additionally, we also examined how acidic metal stress affected the diversity of bacteria and fungi, as well as their networks. Bioindicators were identified using linear discriminant analysis effect size (LEfSe), Partial least squares regression (PLS-R), and Spearman analyses. The study found that Cd, Cu, Pb, and As pose potential ecological risks in that order. Fungal diversity decreased by 44.88% in AMD-affected areas, more than the 33.61% decrease in bacterial diversity. Microbial diversity was positively correlated with pH (r = 0.88, p = 0.04) and negatively correlated with bioavailable metal concentrations (r = -0.59, p = 0.05). Similarly, microbial diversity was negatively correlated with bioavailable metal concentrations (bio_Cu, bio_Pb, bio_Cd) (r = 0.79, p = 0.03). Acidiferrobacter and Thermoplasmataceae were prevalent in acidic metal environments, while Puia and Chitinophagaceae were identified as biomarker species in the control area (LDA>4). Acidiferrobacter and Thermoplasmataceae were found to be pH-tolerant bioindicators with high reliability (r = 1, P < 0.05, BW > 0.1) through PLS-R and Spearman analysis. Conversely, Puia and Chitinophagaceae were pH-sensitive bioindicators, while Teratosphaeriaceae was a potential bioindicator for Cu-Zn-Cd metal pollution. This study identified bioindicator species for acid and metal pollution in AMD habitats. This study outlined the focus of biological monitoring in AMD acidic stress environments, including extreme pH, heavy metal pollutants, and indicator species. It also provided essential information for heavy metal bioremediation, such as the role of omics and the effects of organic matter on metal bioavailability.
Collapse
Affiliation(s)
- Ruofei Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Jianli Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Geoffrey Sunahara
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254, Pau, France
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zozo El-Saadani
- Geology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
7
|
Wang YW, Bai DS, Luo XG, Zhang Y. Effects of Setaria viridis on heavy metal enrichment tolerance and bacterial community establishment in high-sulfur coal gangue. CHEMOSPHERE 2024; 351:141265. [PMID: 38246497 DOI: 10.1016/j.chemosphere.2024.141265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Plant enrichment and tolerance to heavy metals are crucial for the phytoremediation of coal gangue mountain. However, understanding of how plants mobilize and tolerate heavy metals in coal gangue is limited. This study conducted potted experiments using Setaria viridis as a pioneer remediation plant to evaluate its tolerance to coal gangue, its mobilization and enrichment of metals, and its impact on the soil environment. Results showed that the addition of 40% gangue enhanced plant metal and oxidative stress resistance, thereby promoting plant growth. However, over 80% of the gangue inhibited the chlorophyll content, photoelectron conduction rate, and biomass of S. viridis, leading to cellular peroxidative stress. An analysis of metal resistance showed that endogenous S in coal gangue promoted the accumulation of glutathione, plant metal chelators, and non-protein thiols, thereby enhancing its resistance to metal stress. Setaria viridis cultivation affected soil properties by decreasing nitrogen, phosphorus, conductivity, and urease and increasing sucrase and acid phosphatase in the rhizosphere soil. In addition, S. viridis planting increased V, Cr, Ni, As, and Zn in the exchangeable and carbonate-bound states within the gangue, effectively enriching Cd, Cr, Fe, S, U, Cu, and V. The increased mobility of Cd and Pb was correlated with a higher abundance of Proteobacteria and Acidobacteria. Heavy metals, such as As, Fe, V, Mn, Ni, and Cu, along with environmental factors, including total nitrogen, total phosphorus, urease, and acid phosphatase, were the primary regulatory factors for Sphingomonas, Gemmatimonas, and Bryobacter. In summary, S. viridis adapted to gangue stress by modulating antioxidant and elemental enrichment systems and regulating the release and uptake of heavy metals through enhanced bacterial abundance and the recruitment of gangue-tolerant bacteria. These findings highlight the potential of S. viridis for plant enrichment in coal gangue areas and will aid the restoration and remediation of these environments.
Collapse
Affiliation(s)
- Yi-Wang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | | | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
8
|
Zhenggang X, Qi J, Mengxin W, Yunlin Z, Tianyu W, Wenhan Z, Ziyi H, Guiyan Y. Preparation of environmental remediation material based on manganese-slag and sewage sludge as a strategy for remediation of cadmium pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119096. [PMID: 37774661 DOI: 10.1016/j.jenvman.2023.119096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Both manganese-slag and sewage sludge are typical solid wastes, but their utilization is limited. Based on the soil properties, the abovementioned pollutants were combined with Broussonetia papyrifera to treat soil cadmium (Cd) pollution. Three materials (sewage sludge-derived biochar (SSB), Mn-SSB, and Mn-slag (Slag)) were prepared using oxygen-limited pyrolysis technology with Slag and sewage sludge, and the effects of the three materials on the phytoremediation of Cd-polluted soil were investigated. All three materials had distinct morphological characteristics, good functional group structure, specific surface area, and porosity. The adsorption and leaching experiments in the solution indicated that the three materials could not only directly absorb Cd2+ but also release nutrients, such as nitrogen and phosphorus. The soil pH increased significantly (p < 0.05) with the addition of the above environmental remediation materials. Furthermore, the contents of soil organic carbon, available nitrogen, and available phosphorus in soil increased significantly, whereas the electrical conductivity of the soil decreased significantly (p < 0.05). During remediation of Cd-polluted soil by integrating the above materials with B. papyrifera, Slag significantly increased the B. papyrifera biomass, but the effects of SSB and Mn-SSB were not significant. SSB, Mn-SSB, and Slag significantly increased the protein content of B. papyrifera leaves, with Mn-SSB having the most significant effect (p < 0.05). The applications of SSB, Mn-SSB, and Slag reduced the malondialdehyde content and increased the activities of superoxide dismutase and peroxidase, reducing the damage to B. papyrifera. Mn-SSB significantly reduced the Cd content in the roots, stems, and leaves of B. papyrifera, and SSB and Slag promoted Cd enrichment in B. papyrifera. This study realized the comprehensive utilization of Mn-slag and sewage sludge and established a recycling system from solid waste to the treatment of waste soil.
Collapse
Affiliation(s)
- Xu Zhenggang
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China; Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jin Qi
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wang Mengxin
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Zhao Yunlin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wang Tianyu
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Zhai Wenhan
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Huang Ziyi
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yang Guiyan
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Ma J, Xie Y, Sun J, Zou P, Ma S, Yuan Y, Ahmad S, Yang X, Jing C, Li Y. Co-application of chitooligosaccharides and arbuscular mycorrhiza fungi reduced greenhouse gas fluxes in saline soil by improving the rhizosphere microecology of soybean. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118836. [PMID: 37634403 DOI: 10.1016/j.jenvman.2023.118836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Soil salinization can affect the ecological environment of soil and alter greenhouse gas (GHG) emissions. Chitooligosaccharides and Arbuscular mycorrhizal fungi (AMF) reduced the GHG fluxes of salinized soil, and this reduction was attributed to an alteration in the rhizosphere microecology, including changes in the activities of β-glucosidase, acid phosphatase, N-acetyl-β-D-glucosidase, and Leucine aminopeptidase. Additionally, certain bacteria species such as paracoccus, ensifer, microvirga, and paracyclodium were highly correlated with GHG emissions. Another interesting finding is that foliar spraying of chitooligosaccharides could transport to the soybean root system, and improve soybean tolerance to salt stress. This is achieved by enhancing the activities of antioxidant enzymes, and the changes in amino acid metabolism, lipid metabolism, and membrane transport. Importantly, the Co-application of chitooligosaccharides and Arbuscular mycorrhiza fungi was found to have a greater effect compared to their application alone.
Collapse
Affiliation(s)
- Junqing Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yi Xie
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Jiali Sun
- Baoshan Branch, Yunnan Tobacco Company, Baoshan, 678000, China
| | - Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xia Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| |
Collapse
|
10
|
Xu Z, Wang T, Hou S, Ma J, Li D, Chen S, Gao X, Zhao Y, He Y, Yang G. A R2R3-MYB, BpMYB1, from paper mulberry interacts with DELLA protein BpGAI1 in soil cadmium phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132871. [PMID: 39492101 DOI: 10.1016/j.jhazmat.2023.132871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Heavy metal pollution has become increasingly prominent, and bioremediation of heavy metal polluted areas is urgently needed. Broussonetia papyrifera is a pioneer tree species for vegetation restoration in the tailings area, while its molecular mechanism of heavy metal adaptation is not clear. Here, we report that a R2R3 MYB from B. papyrifera (BpMYB1) is involved in Cd accumulation by controlling the down-stream genes and mineral accumulation. Overexpression of BpMYB1 in B. papyrifera resulted in a significant increase in Cd accumulation and multiple gene transcription. Among the up-regulated genes, BpMYB1 could bind to ferrochelatase (BpFC2), basic helix-loop-helix transcription factor bHLH93 (BpbHLH93), and basic leucine zipper transcription factor bZIPs (BpbZIP1, BpbZIP-CPC1) by recognizing TATCCAOSAMY (TATCCA) motif and related promoter segments. Further investigations revealed that overexpression of BpbZIP1 promotes the absorption of Cd, BpMYB1 regulate Cd uptake in plant relating to Fe accumulation without Fe-deficiency pathway via recognizing the downstream BpbHLH93 and involving in PCs biosynthetic pathway via recognizing the target BpFC2. Moreover, the Cd response effect mediated by BpMYB1 was boosted by interacting with a DELLA protein BpGAI1, a vital member of GA signaling. These results provide new insights into the molecular feedback mechanisms underlying BpMYB1-BpGAI1 controlled Cd uptake in plants, which will benefit for phytoremediation of Cd polluted soil.
Collapse
Affiliation(s)
- Zhenggang Xu
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Tianyu Wang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Siyu Hou
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Jiyan Ma
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Dapei Li
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shuwen Chen
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Xiangqian Gao
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Yi He
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Guiyan Yang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
11
|
Zhenggang X, Li F, Mengxi Z, Yunlin Z, Huimin H, Guiyan Y. Physiological dynamics as indicators of plant response to manganese binary effect. FRONTIERS IN PLANT SCIENCE 2023; 14:1145427. [PMID: 37123864 PMCID: PMC10130396 DOI: 10.3389/fpls.2023.1145427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Introduction Heavy metals negatively affect plant physiology. However, plants can reduce their toxicity through physiological responses. Broussonetia papyrifera is a suitable candidate tree for carrying out the phytoremediation of manganese (Mn)-contaminated soil. Methods Considering that Mn stress typically exerts a binary effect on plants, to reveal the dynamic characteristics of the physiological indexes of B. papyrifera to Mn stress, we conducted pot experiments with six different Mn concentrations (0, 0.25, 0.5, 1, 2, and 5 mmol/L) for 60 days. In addition to the chlorophyll content, malondialdehyde (MDA), proline (PRO), soluble sugar, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), the absorption and transfer characteristics of Mn, and root structure were also measured. Results Phytoremedial potential parameters such as the bioconcentration factor (BCF) and translocation factor (TF) displayed an increasing trend with the increase of Mn concentration. At lower Mn concentrations (<0.5 mmol/L), the TF value was <1 but crossed 1 when the Mn concentration exceeded 100 mmol/L. The Mn distribution in various tissues was in the following order: leaf > stem > root. The root structure analysis revealed that low-level concentrations of Mn (1 mmol/L) promoted root development. Mn concentration and stress duration had significant effects on all measured physiological indexes, and except soluble sugar, Mn concentration and stress time displayed a significant interaction on the physiological indexes. Discussion Our study demonstrates that the physiological indexes of B. papyrifera display dynamic characteristics under Mn stress. Thus, during the monitoring process of Mn stress, it appears to be necessary to appropriately select sampling parts according to Mn concentration.
Collapse
Affiliation(s)
- Xu Zhenggang
- College of Forestry, Northwest A&F University, Yangling, China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Fan Li
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zheng Mengxi
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhao Yunlin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Huang Huimin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
- Department of Environmental Monitoring, Changsha Environmental Protection College, Changsha Hunan, China
| | - Yang Guiyan
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|