1
|
Ma WJ, Ma ZS, Zhang HM. Inhibition of zinc ions in sulfur-driven autotrophic denitrification process: What is the behavior of extracellular polymeric substances? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174269. [PMID: 38936729 DOI: 10.1016/j.scitotenv.2024.174269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Sulfur-driven autotrophic denitrification (SAD) process is a cost-effective and sustainable method for nitrogen removal from wastewater. However, a higher concentration of zinc ions (Zn(II)) flowing into wastewater treatment plants poses a potential threat to the SAD process. This study examined that a half maximal inhibitory concentration (IC50) of Zn(II) was 7 mg·L-1 in the SAD process. Additionally, the addition of 20 mg·L-1 Zn(II) resulted in a severe accumulation of nitrite to 150.20 ± 6.00 mg·L-1 when the initial concentration of nitrate was 500 mg·L-1. Moreover, the activities of nitrate reductase, nitrite reductase, dehydrogenase and electron transport system were significantly inhibited under Zn(II) stress. The addition of Zn(II) inhibited EPS secretion and worsened electrochemical properties. The result was attributed to the spontaneous binding between EPS and Zn(II), with a ΔG of -17.50 KJ·mol-1 and a binding constant of 1.77 × 104 M-1, respectively. Meanwhile, the protein, fulvic acid, and humic-like substances occurred static quenching after Zn(II) addition, with -OH and -C=O groups providing binding sites. The binding sequence was fulvic acid→protein→humic acid and -OH → -C=O. Zn(II) also reduced the content of α-helix, which was unfavorable for electron transfer. Additionally, the Zn(II) loosened protein structure, resulting in a 50 % decrease in α-helix/(β-sheet+random coil). This study reveals the effect of Zn(II) on the SAD process and enhances our understanding of EPS behavior under metal ions stress.
Collapse
Affiliation(s)
- Wen-Jie Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Zi-Shang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Han-Min Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
2
|
Wang R, Zhu W, Sun J, Zhang C, Dai H, Qu T. Novel three-stage microalgal cultivation system for lipid production utilizing nutrients derived from refinery waste. BIORESOURCE TECHNOLOGY 2024; 414:131623. [PMID: 39395602 DOI: 10.1016/j.biortech.2024.131623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
The pollution and transformation of refineries are receiving increasing attention. The carbonic anhydrase in Tetradesmus obliquus was found exhibiting a hysteresis phenomenon in response to periodic changes in the composition of external carbon sources, with a surge in inorganic carbon concentration stressing the carbonic anhydrase activity to increase by 6-9 times. On this basis, a novel three-stage culture system of T. obliquus was proposed, which mainly uses refinery waste as the nutrients. By controlling the nutrient content in the environment, especially the composition of carbon sources, microalgae could sequentially complete rapid biomass accumulation, efficient inorganic carbon assimilation, and oil production. Compared to a single-environment culture system, the biomass yield increased by 1.34 times, the oil content increased by more than 6%, and the oil productivity increased by 2.08 times. Above findings may lay a partial theoretical foundation for the future evolution of traditional refineries towards "fossil-algal-biomass" hybrid refineries.
Collapse
Affiliation(s)
- Ruochen Wang
- College of environmental and chemical engineering, Jiangsu University of Science and Technology, Zhenjiang 212114, China; College of Environment, Hohai University, Nanjing 210098, China; Center for Taihu basin, Institute of Water Science and Technology, Hohai University, Nanjing 211111, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 211111, China.
| | - Wei Zhu
- College of Environment, Hohai University, Nanjing 210098, China; Center for Taihu basin, Institute of Water Science and Technology, Hohai University, Nanjing 211111, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 211111, China
| | - JiPeng Sun
- College of Environment, Hohai University, Nanjing 210098, China; Center for Taihu basin, Institute of Water Science and Technology, Hohai University, Nanjing 211111, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 211111, China
| | - Chi Zhang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - Hongliang Dai
- College of environmental and chemical engineering, Jiangsu University of Science and Technology, Zhenjiang 212114, China
| | - Tiantian Qu
- SINOPEC Jinling Company, Water Treatment Department, Nanjing 210033, China
| |
Collapse
|
3
|
Shen L, Kang J, Wang J, Shao S, Zhou H, Yu X, Huang M, Zeng W. Dissecting the mechanism of synergistic interactions between Aspergillus fumigatus and the microalgae Synechocystis sp. PCC6803 under Cd(II) exposure: insights from untargeted metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135354. [PMID: 39126852 DOI: 10.1016/j.jhazmat.2024.135354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Co-culturing fungi and microalgae may effectively remediate wastewater containing Cd and harvest microalgae. Nevertheless, a detailed study of the mechanisms underlying the synergistic interactions between fungi and microalgae under Cd(II) exposure is lacking. In this study, Cd(II) exposure resulted in a significant enhancement of antioxidants, such as glutathione (GSH), malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide dismutase (SOD) compared to the control group, suggesting that the cellular antioxidant defense response was activated. Extracellular proteins and extracellular polysaccharides of the symbiotic system were increased by 60.61 % and ,24.29 %, respectively, after Cd(II) exposure for 72 h. The adsorption behavior of Cd(II) was investigated using three-dimensional fluorescence excitation-emission matrix (3D-EEM), fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). Metabolomics results showed that the TCA cycle provided effective material and energy supply for the symbiotic system to resist the toxicity of Cd(II); Proline, histidine, and glutamine strengthened the synergistic adsorption capacity of the fungus and microalgae. Overall, the theoretical foundation for a deep comprehension of the beneficial interactions between fungi and microalgae under Cd(II) exposure and the role of the fungal-algal symbiotic system in the management of heavy metal pollution is provided by this combined physiological and metabolomic investigation.
Collapse
Affiliation(s)
- Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Shiyu Shao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Min Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China.
| |
Collapse
|
4
|
Li P, Wang D, Hou Y, Hu Z, Song C. Effect of phytohormones on the carbon sequestration performance of CO 2 absorption-microalgae conversion system under low light restriction. ENVIRONMENTAL RESEARCH 2024; 262:119984. [PMID: 39270957 DOI: 10.1016/j.envres.2024.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Microalgae have the potential to fix CO2 into valuable compounds. Low photosynthetic efficiency caused by low light was one of the challenges faced by microalgae carbon sequestration. In this study, Melatonin (MT) and indole-propionic acid (IPA) were used to alleviate the growth inhibition of Spirulina in CAMC system under low light restriction. The results showed that MT and IPA increased biomass and carbon fixation capacity. 10 mg/L IPA group achieved the maximum biomass and carbon fixation capacity, which were 17.11% and 21.46% higher than control. MT and IPA promoted the synthesis of chlorophyll, which in turn captured more light energy for microalgae growth. The increase of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) activities enhanced the resistance of microalgae to low light stress. MT and IPA promoted the secretion of extracellular polymeric substances (EPS) which was benefit to protect cells. The maximum phycocyanin content and yield was found in 10 mg-IPA group, which was 20.67% and 46.67% higher than control. MT and IPA improved the synthesis of carbohydrates and proteins and increased carbohydrates and proteins yield. This indicated that adding phytohormones was an effective method to alleviate the growth of microalgae restricted by low light stress, which provided a theoretical guidance for the application of CAMC system in CO2 capture and resource utilization.
Collapse
Affiliation(s)
- Pengcheng Li
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072 P.R. China
| | - Dantong Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072 P.R. China
| | - Yaoqi Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072 P.R. China
| | - Zhan Hu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072 P.R. China
| | - Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072 P.R. China.
| |
Collapse
|
5
|
Zhou Y, Cui X, Wu B, Wang Z, Liu Y, Ren T, Xia S, Rittmann BE. Microalgal extracellular polymeric substances (EPS) and their roles in cultivation, biomass harvesting, and bioproducts extraction. BIORESOURCE TECHNOLOGY 2024; 406:131054. [PMID: 38944317 DOI: 10.1016/j.biortech.2024.131054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Microalgae extracellular polymeric substances (EPS) are complex high-molecular-weight polymers and the physicochemical properties of EPS strongly affect the core features of microalgae cultivation and resource utilization. Revealing the key roles of EPS in microalgae life-cycle processes in an interesting and novelty topic to achieve energy-efficient practical application of microalgae. This review found that EPS showed positive effect in non-gas uptake, extracellular electron transfer, toxicity resistance and heterotrophic symbiosis, but negative impact in gas transfer and light utilization during microalgae cultivation. For biomass harvesting, EPS favored biomass flocculation and large-size cell self-flocculation, but unfavored small size microalgae self-flocculation, membrane filtration, charge neutralization and biomass dewatering. During bioproducts extraction, EPS exhibited positive impact in extractant uptake, but the opposite effect in cellular membrane permeability and cell rupture. Future research on microalgal EPS were also identified, which offer suggestions for comprehensive understanding of microalgal EPS roles in various scenarios.
Collapse
Affiliation(s)
- Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziqi Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States of America
| |
Collapse
|
6
|
Lee H, Nguyen DV, Wu D, De Saeger J, Park M, Lee SD, Yu Y, Lee J, Lee C, Han T, Park J. A rapid and multi-endpoint ecotoxicological test using Mychonastes afer for efficient screening of metals and herbicides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116652. [PMID: 38941657 DOI: 10.1016/j.ecoenv.2024.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Microalgal growth-based tests are international standards for ecotoxicity assessment; however, their long exposure times, large sample volumes, and reliance on a single growth-endpoint make them inadequate for rapid toxicity screening. Here, we aimed to develop a rapid and simple ecotoxicological test using the fast-growing green alga Mychonastes afer, with multiple endpoints-growth, lipid content, and photosynthesis. We exposed M. afer to two metals-silver and copper-and two herbicides-atrazine and diuron-for 24 h and identified the most sensitive and reliable endpoints for each toxicant: the maximum electron transport rate (ETRmax) for Ag, Cu and atrazine, and the lipid content for diuron. Lipid content was found to be both a sensitive and reliable biomarker, meeting the effluent limit guidelines in both the Republic of Korea and the USA. The sensitivity of M. afer to Ag and atrazine also closely matched the HC5 values derived from the species sensitivity distribution approach, confirming its reliability for setting regulatory concentrations of these contaminants. Our calculated predicted no-effect concentration (PNEC) values were similar to established European Union PNECs for Ag, Cu, atrazine, and diuron, underlining the utility of these biological endpoints for ecological risk assessment and regulatory decision making. This method required lower sample volume (2 mL vs 100 mL) and exposure time (24 h vs 72-120 h) than conventional green algal tests, and eliminated the need for labour-intensive cell counting, expensive equipment, and chlorophyll fluorescence measurement expertise. Overall, this M. afer test can be a valuable tool for the rapid screening of wastewater for metals and herbicides, contributing to environmental protection and management practices.
Collapse
Affiliation(s)
- Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Duc-Viet Nguyen
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Di Wu
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Jonas De Saeger
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Mirye Park
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources, 137, Donam-2-gil, Sangju-si, Gyeongsangbuk-do 37242, Republic of Korea
| | - Sang Deuk Lee
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources, 137, Donam-2-gil, Sangju-si, Gyeongsangbuk-do 37242, Republic of Korea
| | - Youngseock Yu
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Jaeyoung Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Chaeyeon Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Taejun Han
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, Gent B-9000, Belgium
| | - Jihae Park
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, Gent B-9000, Belgium.
| |
Collapse
|
7
|
Yu Q, Chen J, Ye M, Wei Y, Zhang C, Ge Y. N-acyl homoserine lactones (AHLs) enhanced removal of cadmium and other pollutants by algae-bacteria consortia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121792. [PMID: 39002459 DOI: 10.1016/j.jenvman.2024.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Signal transduction is an important mode of algae-bacteria interaction, in which bacterial quorum sensing (QS) may affect microalgal growth and metabolism. Currently, little is known whether acyl homoserine lactones (AHLs) released by bacteria can affect the pollutant removal by algae-bacteria consortia (ABC). In this study, we constructed ABC using Chlorella vulgaris (Cv) with two AHLs-producing bacteria and investigated their performance in the removal of multiple pollutants, including chemical oxygen demand (COD), total nitrogen (TN), phosphorus (P), and cadmium (Cd). The AHLs-producing bacteria, namely Agrobacterium sp. (Ap) and Ensifer adherens (Ea), were capable of forming a symbiosis with C. vulgaris. Consortia of Cv and Ap with ratio of 2:1 (Cv2-Ap1) showed the optimal growth promotion and higher removal of Cd, COD, TN, and P compared to the C. vulgaris monoculture. Cv2-Ap1 ABC removed 36.1-47.5% of Cd, 94.5%-94.6% COD, 37.1%-56.0% TN, and 90.4%-93.5% P from the culture medium. In addition, increase of intracellular neutral lipids and extracellular protein, as well as the types of functional groups on cell surface contributed to Cd removal and tolerance in the Cv2-Ap1 ABC. Six AHLs were detected in the Cv2-Ap1 culture. Among these, 3OC8-HSL and 3OC12-HSL additions promoted the ABC growth and enhanced their Cd accumulation. These findings may contribute to further understanding of AHL-mediated communication between algae and bacteria and provide support bioremediation efforts of metal-containing wastewater.
Collapse
Affiliation(s)
- Qingnan Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiale Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanping Wei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunhua Zhang
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Bellido-Pedraza CM, Torres MJ, Llamas A. The Microalgae Chlamydomonas for Bioremediation and Bioproduct Production. Cells 2024; 13:1137. [PMID: 38994989 PMCID: PMC11240456 DOI: 10.3390/cells13131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
The extensive metabolic diversity of microalgae, coupled with their rapid growth rates and cost-effective production, position these organisms as highly promising resources for a wide range of biotechnological applications. These characteristics allow microalgae to address crucial needs in the agricultural, medical, and industrial sectors. Microalgae are proving to be valuable in various fields, including the remediation of diverse wastewater types, the production of biofuels and biofertilizers, and the extraction of various products from their biomass. For decades, the microalga Chlamydomonas has been widely used as a fundamental research model organism in various areas such as photosynthesis, respiration, sulfur and phosphorus metabolism, nitrogen metabolism, and flagella synthesis, among others. However, in recent years, the potential of Chlamydomonas as a biotechnological tool for bioremediation, biofertilization, biomass, and bioproducts production has been increasingly recognized. Bioremediation of wastewater using Chlamydomonas presents significant potential for sustainable reduction in contaminants and facilitates resource recovery and valorization of microalgal biomass, offering important economic benefits. Chlamydomonas has also established itself as a platform for the production of a wide variety of biotechnologically interesting products, such as different types of biofuels, and high-value-added products. The aim of this review is to achieve a comprehensive understanding of the potential of Chlamydomonas in these aspects, and to explore their interrelationship, which would offer significant environmental and biotechnological advantages.
Collapse
Affiliation(s)
- Carmen M Bellido-Pedraza
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), University of Córdoba, Edificio Severo Ochoa, 14071 Córdoba, Spain
| | - Maria J Torres
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), University of Córdoba, Edificio Severo Ochoa, 14071 Córdoba, Spain
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), University of Córdoba, Edificio Severo Ochoa, 14071 Córdoba, Spain
| |
Collapse
|
9
|
Rico M, Santiago-Díaz P, Rivero A, Santana-Casiano JM. Characterization of polyphenols and carbohydrates exuded by Phaeodactylum tricornutum diatom grown under Cu stress. Sci Rep 2024; 14:9367. [PMID: 38654118 DOI: 10.1038/s41598-024-60252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/20/2024] [Indexed: 04/25/2024] Open
Abstract
This study is focused on analysing polyphenols and carbohydrates released by Phaeodactylum tricornutum (P. tricornutum) diatoms cultured in natural seawater enriched with sublethal and lethal Cu doses. Cu concentrations of 0.31, 0.79 and 1.57 µM reduced cell densities by 37, 82 and 91%, respectively, compared to the control. The total sum of all identified polyphenols and total carbohydrates released by cells grown under lethal Cu levels increased up to 18.8 and 107.4 times, respectively, compared to data from a control experiment. Four different in vitro assays were used to estimate the antioxidant activities of the extracellular compounds: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition, cupric ion reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power and Cu complexing ability (CCA). The highest antioxidant activities were observed in the Cu lethal treatments, where the CCA assay exhibited a greater increase (up to 32.2 times higher than that found in the control experiment) to reduce the concentration of free Cu in the medium and its toxicity. The presence of Cu stimulated the release of polyphenols and carbohydrates to the medium as a detoxification mechanism to survive under lethal levels of Cu regulating its speciation.
Collapse
Affiliation(s)
- Milagros Rico
- Departamento de Química , Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain.
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Las Palmas de Gran Canaria, Spain.
| | - Paula Santiago-Díaz
- Departamento de Química , Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Las Palmas de Gran Canaria, Spain
| | - Argimiro Rivero
- Departamento de Química , Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Las Palmas de Gran Canaria, Spain
| | - Juana Magdalena Santana-Casiano
- Departamento de Química , Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
10
|
Li P, Chen J, Ying S, Chen N, Fang S, Ye M, Zhang C, Li C, Ge Y. Different responses of Sinorhizobium sp. upon Pb and Zn exposure: Mineralization versus complexation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123260. [PMID: 38159637 DOI: 10.1016/j.envpol.2023.123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Lead (Pb) and zinc (Zn) have been discharged into environment and may negatively impact ecological security. Rhizobia has gained attention due to their involvement in the restoration of metal polluted soils. However, little is known about the responses of rhizobia under Pb and Zn stress, especially the roles played by extracellular polymeric substances (EPS) in the resistance of these two metals. Here, Sinorhizobium sp. C10 was isolated from soil around a mining area and was exposed to a series of Pb/Zn treatments. The cell morphology and surface mineral crystals, EPS content and fluorescent substances were determined. In addition, the extracellular polysaccharides and proteins were characterized by attenuated total reflection infrared spectroscopy (ATR-IR) and X-ray photoelectron spectroscopy (XPS). The results showed that Zn stress induced the synthesis of EPS by C10 cells. Functional groups of polysaccharides (CO) and proteins (C-O/C-N) were involved in complexation with Zn. In contrast, C10 resisted Pb stress by forming lead phosphate (Pb3(PO4)2) on the cell surface. Galactose (Gal) and tyrosine played key roles in resistance to the Zn toxicity, whereas glucosamine (N-Glc) was converted to glucose in large amounts during extracellular Pb precipitation. Together, this study demonstrated that C10 possessed different strategies to detoxify the two metals, and could provide basis for bioremediation of Pb and Zn polluted sites.
Collapse
Affiliation(s)
- Peihuan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiale Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shumin Ying
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nike Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chonghua Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Millet RT, Santos JP, Slaveykova VI. Exploring the subcellular distribution of mercury in green alga Chlamydomonas reinhardtii and diatom Cyclotella meneghiniana: A comparative study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106836. [PMID: 38232614 DOI: 10.1016/j.aquatox.2024.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Mercury (Hg) is a priority pollutant of global concern because of its toxicity, its ability to bioaccumulate throughout the food web and reach significant concentrations in top predators. Phytoplankton bioconcentrate large amounts of Hg and play a key role in the entry of Hg into the aquatic food web. However, the subcellular distribution of Hg in freshwater phytoplankton, known to affect it toxicity and trophic transfer is understudied. The present study aimed at investigating the accumulation of inorganic Hg (iHg) and its subcellular distribution in freshwater phytoplankton species. To this end green alga Chlamydomonas reinhardtii and diatom Cyclotella meneghiniana were exposed to 10 and 100 nM of iHg for 2 h. The concentrations of Hg in the adsorbed, intracellular and subcellular (granules, debris, organelles, heat-stable peptides (HSP) and heat-denaturable proteins (HDP)) fractions were determined. The results showed that C. meneghiniana accumulated more Hg compared to C. reinhardtii at both iHg exposure concentrations (10 nM: 4.41 ± 0.74 vs. 1.10 ± 0.25 amol cell-1; 100 nM: 79.35 ± 10.78 vs. 38.31 ± 4.15 amol cell-1). The evaluation of the subcellular distribution of Hg, revealed that the majority of Hg was concentrated in the organelles fraction (59.7 % and 74.6 %) in the green algae. In the diatom, Hg was mainly found in the organelles (40.9 % and 33.3%) and in the HSP fractions (26.8 % and 40.1 %). The proportion of Hg in HDP fraction decreased in favor of the organelles fraction in C. reinhardtii when the exposure concentration increased, whereas the proportions in the debris and organelles fractions decreased in favor of HSP fraction in C. meneghiniana. This study provides pioneering information on the subcellular distribution of Hg within in freshwater phytoplankton, a knowledge that is essential to understand the toxicity and trophic transfer of Hg in contaminated aquatic environment.
Collapse
Affiliation(s)
- Rémy T Millet
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| | - João P Santos
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland.
| |
Collapse
|
12
|
Liu X, Yao T, Chai J, Han J. Adsorption of Sodium Ions by Exopolysaccharides from Pseudomonas simiae MHR6 and Its Improvement of Na +/K + Homeostasis in Maize under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19949-19957. [PMID: 38018896 DOI: 10.1021/acs.jafc.3c05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Exopolysaccharides (EPS) are macromolecular substances with environmentally beneficial properties. At present, some reports have focused on the effects of EPS on plants salt stress; however, few studies have carried out a deeper characterization of the EPS components involved in Na+ binding. We investigated the mechanism of Na+ adsorption by Pseudomonas simiae MHR6 EPS and the regulation of ion homeostasis in maize under salt stress. The results showed that NaCl at 6% significantly inhibited MHR6 growth but enhanced EPS secretion. The chemical composition of the EPS varied in response to an increased NaCl concentration, and the proportion of polysaccharides was consistently higher than that of proteins. The highest Na+ adsorption was observed for 6% NaCl. The FTIR, SEM, and EDX results further indicated that EPS effectively biosorbed Na+. Furthermore, adding EPS improved Na+/K+ homeostasis in maize under salt stress. These results suggest that MHR6 EPS has potential for future development and utilization as a plant growth biostimulant in saline-alkali land.
Collapse
Affiliation(s)
- Xiaoting Liu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Tuo Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Jiali Chai
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Jiangru Han
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou 730070, P.R. China
| |
Collapse
|