1
|
Markey E, Hourihane Clancy J, Martínez-Bracero M, Sarda-Estève R, Baisnée D, McGillicuddy EJ, Sewell G, Skjøth CA, O'Connor DJ. Spectroscopic detection of bioaerosols with the wibs-4+: Anthropogenic and meteorological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173649. [PMID: 38852865 DOI: 10.1016/j.scitotenv.2024.173649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
This research builds upon a previous study that explored the potential of the modified WIBS-4+ to selectively differentiate and detect different bioaerosol classes. The current work evaluates the influence of meteorological and air quality parameters on bioaerosol concentrations, specifically pollen and fungal spore dynamics. Temperature was found to be the most influential parameter in terms of pollen production and release, showing a strong positive correlation. Wind data analysis provided insights into the potential geographic origins of pollen and fungal spore concentrations. Fungal spores were primarily shown to originate from a westerly direction, corresponding to agricultural land use, whereas pollen largely originated from a North-easterly direction, corresponding to several forests. The influence of air quality was also analysed to understand its potential impact on the WIBS fluorescent parameters investigated. Most parameters had a negative association with fungal spore concentrations, whereas several anthropogenic influences showed notable positive correlations with daily pollen concentrations. This is attributed to similar driving forces (meteorological parameters) and geographical origins. In addition, the WIBS showed a significant correlation with anthropogenic pollutants originating from combustion sources, suggesting the potential for such modified spectroscopic instruments to be utilized as air quality monitors. By combining all meteorological and pollution data along with WIBS-4+ channel data, a set of Multiple Linear Regression (MLR) analyses were completed. Successful results with R2 values ranging from 0.6 to 0.8 were recorded. The inclusion of meteorological parameters was dependent on the spore or pollen type being examined.
Collapse
Affiliation(s)
- Emma Markey
- School of Chemical Sciences, Dublin City University, D09 E432 Dublin, Ireland
| | | | | | - Roland Sarda-Estève
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CNRS-CEA-UVSQ, 91191 Saint-Aubin, France
| | - Dominique Baisnée
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CNRS-CEA-UVSQ, 91191 Saint-Aubin, France
| | - Eoin J McGillicuddy
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Gavin Sewell
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Carsten Ambelas Skjøth
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - David J O'Connor
- School of Chemical Sciences, Dublin City University, D09 E432 Dublin, Ireland
| |
Collapse
|
2
|
Grewling Ł, Ribeiro H, Antunes C, Apangu GP, Çelenk S, Costa A, Eguiluz-Gracia I, Galveias A, Gonzalez Roldan N, Lika M, Magyar D, Martinez-Bracero M, Ørby P, O'Connor D, Penha AM, Pereira S, Pérez-Badia R, Rodinkova V, Xhetani M, Šauliene I, Skjøth CA. Outdoor airborne allergens: Characterization, behavior and monitoring in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167042. [PMID: 37709071 DOI: 10.1016/j.scitotenv.2023.167042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Aeroallergens or inhalant allergens, are proteins dispersed through the air and have the potential to induce allergic conditions such as rhinitis, conjunctivitis, and asthma. Outdoor aeroallergens are found predominantly in pollen grains and fungal spores, which are allergen carriers. Aeroallergens from pollen and fungi have seasonal emission patterns that correlate with plant pollination and fungal sporulation and are strongly associated with atmospheric weather conditions. They are released when allergen carriers come in contact with the respiratory system, e.g. the nasal mucosa. In addition, due to the rupture of allergen carriers, airborne allergen molecules may be released directly into the air in the form of micronic and submicronic particles (cytoplasmic debris, cell wall fragments, droplets etc.) or adhered onto other airborne particulate matter. Therefore, aeroallergen detection strategies must consider, in addition to the allergen carriers, the allergen molecules themselves. This review article aims to present the current knowledge on inhalant allergens in the outdoor environment, their structure, localization, and factors affecting their production, transformation, release or degradation. In addition, methods for collecting and quantifying aeroallergens are listed and thoroughly discussed. Finally, the knowledge gaps, challenges and implications associated with aeroallergen analysis are described.
Collapse
Affiliation(s)
- Łukasz Grewling
- Laboratory of Aerobiology, Department of Systematic and Environmental Botany, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| | - Helena Ribeiro
- Department of Geosciences, Environment and Spatial Plannings of the Faculty of Sciences, University of Porto and Earth Sciences Institute (ICT), Portugal
| | - Celia Antunes
- Department of Medical and Health Sciences, School of Health and Human Development & ICT-Institute of Earth Sciences, IIFA, University of Évora, 7000-671 Évora, Portugal
| | | | - Sevcan Çelenk
- Department of Biology, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| | - Ana Costa
- Department of Medical and Health Sciences, School of Health and Human Development & ICT-Institute of Earth Sciences, IIFA, University of Évora, 7000-671 Évora, Portugal
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga 29010, Spain
| | - Ana Galveias
- Department of Medical and Health Sciences, School of Health and Human Development & ICT-Institute of Earth Sciences, IIFA, University of Évora, 7000-671 Évora, Portugal
| | - Nestor Gonzalez Roldan
- Group of Biofunctional Metabolites and Structures, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany; Pollen Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mirela Lika
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Donát Magyar
- National Center for Public Health and Pharmacy, Budapest, Hungary
| | | | - Pia Ørby
- Department of Environmental Science, Danish Big Data Centre for Environment and Health (BERTHA) Aarhus University, Aarhus, Denmark
| | - David O'Connor
- School of Chemical Sciences, Dublin City University, Dublin D09 E432, Ireland
| | - Alexandra Marchã Penha
- Water Laboratory, School of Sciences and Technology, ICT-Institute of Earth Sciences, IIFA, University of Évora. 7000-671 Évora, Portugal
| | - Sónia Pereira
- Department of Geosciences, Environment and Spatial Plannings of the Faculty of Sciences, University of Porto and Earth Sciences Institute (ICT), Portugal
| | - Rosa Pérez-Badia
- Institute of Environmental Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain
| | | | - Merita Xhetani
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | | | | |
Collapse
|
3
|
Frisk CA, Adams-Groom B, Smith M. Isolating the species element in grass pollen allergy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163661. [PMID: 37094678 DOI: 10.1016/j.scitotenv.2023.163661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Grass pollen is a leading cause of allergy in many countries, particularly Europe. Although many elements of grass pollen production and dispersal are quite well researched, gaps still remain around the grass species that are predominant in the air and which of those are most likely to trigger allergy. In this comprehensive review we isolate the species aspect in grass pollen allergy by exploring the interdisciplinary interdependencies between plant ecology, public health, aerobiology, reproductive phenology and molecular ecology. We further identify current research gaps and provide open ended questions and recommendations for future research in an effort to focus the research community to develop novel strategies to combat grass pollen allergy. We emphasise the role of separating temperate and subtropical grasses, identified through divergence in evolutionary history, climate adaptations and flowering times. However, allergen cross-reactivity and the degree of IgE connectivity in sufferers between the two groups remains an area of active research. The importance of future research to identify allergen homology through biomolecular similarity and the connection to species taxonomy and practical implications of this to allergenicity is further emphasised. We also discuss the relevance of eDNA and molecular ecological techniques (DNA metabarcoding, qPCR and ELISA) as important tools in quantifying the connection between the biosphere with the atmosphere. By gaining more understanding of the connection between species-specific atmospheric eDNA and flowering phenology we will further elucidate the importance of species in releasing grass pollen and allergens to the atmosphere and their individual role in grass pollen allergy.
Collapse
Affiliation(s)
- Carl A Frisk
- Department of Urban Greening and Vegetation Ecology, Norwegian Institute of Bioeconomy Research, Ås, Norway.
| | - Beverley Adams-Groom
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Matt Smith
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|