1
|
Riedel JA, Smolina I, Donat C, Svendheim LH, Farkas J, Hansen BH, Olsvik PA. Into the deep: Exploring the molecular mechanisms of hyperactive behaviour induced by three rare earth elements in early life-stages of the deep-sea scavenging amphipod Tmetonyx cicada (Lysianassidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175968. [PMID: 39226952 DOI: 10.1016/j.scitotenv.2024.175968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
With increasing socio-economic importance of the rare earth elements and yttrium (REY), Norway has laid out plans for REY mining, from land-based to deep-sea mining, thereby enhancing REY mobility in the marine ecosystem. Little is known about associated environmental consequences, especially in the deep ocean. We explored the toxicity and modes of action of a light (Nd), medium (Gd) and heavy (Yb) REY-Cl3 at four concentrations (3, 30, 300, and 3000 μg L-1) in the Arcto-boreal deep-sea amphipod Tmetonyx cicada. At the highest concentration, REY solubility was limited and increased with atomic weight (Nd < Gd < Yb). Lethal effects were practically restricted to this treatment, with the lighter elements being more acutely toxic than Yb (from ∼50 % mortality in the Gd-group at dissolved 689-504 μg L-1 to <20 % in the Yb-group at ca. 2000 μg L-1), which could be a function of bioavailability. All three REY induced hyperactivity at the low-medium concentrations. Delving into the transcriptome of T. cicada allowed us to determine a whole array of potential (neurotoxic) mechanisms underlying this behaviour. Gd induced the vastest response, affecting serotonin-synthesis; sphingolipid-synthesis; the renin-angiotensin system; mitochondrial and endoplasmic reticulum functioning (Gd, Nd); and lysosome integrity (Gd, Yb); as well as the expression of hemocyanin, potentially governing REY-uptake (Gd, Yb). While Nd and Yb shared only few pathways, suggesting a link between mode of action and atomic weight/radius, almost all discussed mechanisms imply the disruption of organismal Ca-homeostasis. Despite only fragmental genomic information available for crustaceans to date, our results provide novel insight into the toxicophysiology of REY in marine biota. The neurotoxic/behavioural effects in T. cicada at concentrations with potential environmental relevance warn about the possibility of bottom-up ecological consequences in mining exposed fjords and deep-sea ecosystems, calling for follow-up studies and regulatory measures prior to the onset of REY mining in Norway.
Collapse
Affiliation(s)
- Juliane Annemieke Riedel
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway.
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - Coline Donat
- IUT de Saint Étienne, Université Jean Monnet, 28 Av. Léon Jouhaux, 42100 Saint-Étienne, France
| | | | - Julia Farkas
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Bjørn Henrik Hansen
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Pål Asgeir Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| |
Collapse
|
2
|
Betz-Koch S, Grittner L, Krauss M, Listmann S, Oehlmann J, Oetken M. The impact of repeated pyrethroid pulses on aquatic communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177177. [PMID: 39481550 DOI: 10.1016/j.scitotenv.2024.177177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Pesticides are considered to be one of the main causes of the decline in macroinvertebrate biodiversity in small streams. In particular, pyrethroids are detected in agricultural surface waters worldwide and pose a high risk to aquatic invertebrates. Due to their knock-down effect, even short pyrethroid exposure pulses can have significant short- and long-term effects on macroinvertebrate communities. Therefore, it is necessary to consider more realistic exposure scenarios for the environmental risk assessment of pyrethroids and, consequently, to obtain more realistic effect data by using multi-stressor test systems. In an experimental setup with artificial indoor streams (AIS), four pyrethroid pulses simulated the exposure scenario of heavy rainfall events. Effects of these 12 h-exposures at different concentrations of deltamethrin (0.64 ng/L, 4 ng/L, 16 ng/L, 64 ng/L) with intervening recovery periods of six days were assessed on an aquatic community consisting of Gammarus pulex, Ephemera danica, Lumbriculus variegatus and Potamopyrgus antipodarum with various lethal and sub-lethal endpoints. The mortality rate of G. pulex significantly increased with increasing deltamethrin concentrations, whereas the mean number of offspring significantly decreased (NOECoffspring: 16 ng/L, LOECoffspring: 64 ng/L). The biomass of L. variegatus decreased with increasing deltamethrin concentrations (NOECdry weight: 16 ng/L, LOECdry weight: 64 ng/L). The findings of this study clearly demonstrate that 12 h-deltamethrin pulses at environmentally relevant concentrations adversely affect an aquatic community. Based on the results of this study a RAC value of 5.33 ng/L is assumed, which is below the concentrations measured in rivers of up to 58.8 ng/L. Unacceptable effects on the entire freshwater environment can therefore not be ruled out. The experimental AIS approach is a useful tool for assessing the effects of repeated pulse exposures that occur during surface runoff events.
Collapse
Affiliation(s)
- Sarah Betz-Koch
- Department Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany.
| | - Lukas Grittner
- Department Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany
| | - Martin Krauss
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Stefanie Listmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany
| | - Matthias Oetken
- Department Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Lawan I, Umbuzeiro GDA, Lyndon AR, Henry TB. Developing behavioural ecotoxicology assessment methods in the tropical marine amphipod, Parhyale hawaiensis: A study with benzo[a]pyrene (BaP). MARINE POLLUTION BULLETIN 2024; 209:117142. [PMID: 39432986 DOI: 10.1016/j.marpolbul.2024.117142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Toxicant-induced behavioural changes provide important insights into environmental toxicity, particularly in vulnerable tropical marine habitats. However, ecotoxicological knowledge of organisms in these environments is insufficient. We aimed to develop innovative and cost-effective ecotoxicology methods using Parhyale hawaiensis as a tropical model organism. Adult P. hawaiensis were exposed to aqueous benzo[a]pyrene (BaP) (2 μM) and dietary BaP (50, 250, or 1250 μg BaP/g diet). Survival (24 to 96 h) and behavioural responses (21d) to foraging, reproduction, and predator avoidance were studied. Aqueous and dietary exposures to benzo[a]pyrene (BaP) did not affect survival but induced significant immobility with effective concentration (EC50 ± SE, 96 h at 11.89 ± 1.19 μM). Relative to the control group, aqueous exposure to 2 μM and dietary exposure to 250 and 1250 μg BaP/g feed resulted in statistically significant behavioural changes. These included a 55-76 % reduction in feeding rates, 133 % increase in chemosensation time, 60-122 % drop in moulting frequency, 200 % delay in precopulatory activity, 50-83 % decrease in geotactic activity, and 300-400 % increase in phototactic activity (all significant at p ≤ 0.05). The methods developed in this study are cost-effective, sensitive, and readily integrated into other endpoint analyses, reinforcing the potential of P. hawaiensis as a tropical ecotoxicology model for detecting toxicant-induced behavioural responses and enhancing marine risk assessments.
Collapse
Affiliation(s)
- Ibrahim Lawan
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | | | - Alastair Robert Lyndon
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Theodore Burdick Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom; Department of Forestry Wildlife and Fisheries, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
4
|
Soose LJ, Rex T, Oehlmann J, Schiwy A, Krauss M, Brack W, Klimpel S, Hollert H, Jourdan J. One like all? Behavioral response range of native and invasive amphipods to neonicotinoid exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124235. [PMID: 38801881 DOI: 10.1016/j.envpol.2024.124235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Native and invasive species often occupy similar ecological niches and environments where they face comparable risks from chemical exposure. Sometimes, invasive species are phylogenetically related to native species, e.g. they may come from the same family and have potentially similar sensitivities to environmental stressors due to phylogenetic conservatism and ecological similarity. However, empirical studies that aim to understand the nuanced impacts of chemicals on the full range of closely related species are rare, yet they would help to comprehend patterns of current biodiversity loss and species turnover. Behavioral sublethal endpoints are of increasing ecotoxicological interest. Therefore, we investigated behavioral responses (i.e., change in movement behavior) of the four dominant amphipod species in the Rhine-Main area (central Germany) when exposed to the neonicotinoid thiacloprid. Moreover, beyond species-specific behavioral responses, ecological interactions (e.g. parasitation with Acanthocephala) play a crucial role in shaping behavior, and we have considered these infections in our analysis. Our findings revealed distinct baseline behaviors and species-specific responses to thiacloprid exposure. Notably, Gammarus fossarum exhibited biphasic behavioral changes with hyperactivity at low concentrations that decreased at higher concentrations. Whereas Gammarus pulex, Gammarus roeselii and the invasive species Dikerogammarus villosus, showed no or weaker behavioral responses. This may partly explain why G. fossarum disappears in chemically polluted regions while the other species persist there to a certain degree. But it also shows that potential pre-exposure in the habitat may influence behavioral responses of the other amphipod species, because habituation occurs, and potential hyperactivity would be harmful to individuals in the habitat. The observed responses were further influenced by acanthocephalan parasites, which altered baseline behavior in G. roeselii and enhanced the behavioral response to thiacloprid exposure. Our results underscore the intricate and diverse nature of responses among closely related amphipod species, highlighting their unique vulnerabilities in anthropogenically impacted freshwater ecosystems.
Collapse
Affiliation(s)
- Laura J Soose
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany.
| | - Tobias Rex
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Andreas Schiwy
- Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Fraunhofer-Institute für Molecular Biology and Applied Ecology IME, Department Media-related Ecotoxicology, Frankfurt am Main, Germany
| | - Martin Krauss
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Werner Brack
- Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Sven Klimpel
- Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Goethe University of Frankfurt, Department Integrative Parasitology and Zoophysiology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Henner Hollert
- Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Fraunhofer-Institute für Molecular Biology and Applied Ecology IME, Department Media-related Ecotoxicology, Frankfurt am Main, Germany
| | - Jonas Jourdan
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Bedrossiantz J, Goyenechea J, Prats E, Gómez-Canela C, Barata C, Raldúa D, Cachot J. Cardiac and neurobehavioral impairments in three phylogenetically distant aquatic model organisms exposed to environmentally relevant concentrations of boscalid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123685. [PMID: 38460591 DOI: 10.1016/j.envpol.2024.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Boscalid (2-Chloro-N-(4'-chlorobiphenyl-2-yl) nicotinamide), a pyridine carboxamide fungicide, is an inhibitor of the complex II of the respiration chain in fungal mitochondria. As boscalid is only moderately toxic for aquatic organisms (LC50 > 1-10 mg/L), current environmental levels of this compound in aquatic ecosystems, in the range of ng/L-μg/L, are considered safe for aquatic organisms. In this study, we have exposed zebrafish (Danio rerio), Japanese medaka (Oryzias latipes) and Daphnia magna to a range of concentrations of boscalid (1-1000 μg/L) for 24 h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR), and habituation (HB) to a series of vibrational or light stimuli have been evaluated. Moreover, changes in the profile of the main neurotransmitters have been determined. Boscalid altered HR in a concentration-dependent manner, leading to a positive or negative chronotropic effect in fish and D. magna, respectively. While boscalid decreased BLA and increased VMR in Daphnia, these behaviors were not altered in fish. For SR and HB, the response was more species- and concentration-specific, with Daphnia exhibiting the highest sensitivity. At the neurotransmission level, boscalid exposure decreased the levels of L-aspartic acid in fish larvae and increased the levels of dopaminergic metabolites in D. magna. Our study demonstrates that exposure to environmental levels of boscalid alters cardiac activity, impairs ecologically relevant behaviors, and leads to changes in different neurotransmitter systems in phylogenetically distinct vertebrate and invertebrate models. Thus, the results presented emphasize the need to review the current regulation of this fungicide.
Collapse
Affiliation(s)
- Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain.
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), IQS School of Engineering, Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Cristián Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), IQS School of Engineering, Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Jérôme Cachot
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
6
|
Gao X, Liu Y, Tang C, Lu M, Zou J, Li Z. Evaluating river health through respirogram metrics: Insights from the Weihe River basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170805. [PMID: 38342463 DOI: 10.1016/j.scitotenv.2024.170805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Human activities pose a significant threat to rivers, requiring robust assessment methods for effective river management. This study focuses on the Weihe River Basin in Shaanxi province and introduces the respirogram as an innovative assessment technique. The respirogram allows the simultaneous assessment of river health from two important aspects: pollution levels and microbial status. Specifically, the in-situ respiration ratio (Rs/t) serves as an indicator of pollution, with higher Rs/t values correlating with increased pollution levels. Conversely, the recovery index (RI) measures microbial vitality, with values below 0.15 indicating greater microbial activity and recovery potential. Using predefined thresholds of Rs/t = 0.3 and RI = 0.15, water bodies were categorized into four types. For example, rivers with Rs/t > 0.3 and RI > 0.15 were identified as receiving sewage, characterized by high pollution and low microbial vitality. Similarly, different assessment criteria delineated urban rivers, natural rivers, and wastewater treatment plants. Based on these classifications, targeted engineering measures were proposed to enhance the self-purification capabilities of rivers of different statuses.
Collapse
Affiliation(s)
- Xingdong Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yanxia Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Congcong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Meng Lu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiageng Zou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
7
|
Green-Ojo B, Tan H, Botelho MT, Obanya H, Grinsted L, Parker MO, Ford AT. The effects of plastic additives on swimming activity and startle response in marine amphipod Echinogammarus marinus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170793. [PMID: 38336051 DOI: 10.1016/j.scitotenv.2024.170793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Plastic additives are widely used in plastic production and are found in the environment owing to their widespread applications. Among these additives, N-butyl benzenesulfonamide (NBBS) and triphenyl phosphate (TPHP) are under international watchlist for evaluation, with limited studies on amphipods. Di-ethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP) are banned in some countries and categorised as substances of very high concern. This study aimed to investigate the effects of NBBS, TPHP, DEHP and DBP on the swimming activity of a coastal intertidal marine amphipod, Echinogammarus marinus. Furthermore, this study is the first to quantify startle response in E. marinus in response to light stimuli. Amphipods were exposed to 0, 0.5, 5, 50 and 500 μg/l concentrations of all test compounds. Swimming activity and startle responses were assessed by video tracking and analysis using an 8-min alternating dark and light protocol after exposure on days 7 and 14. We observed an overall compound and light effect on the swimming activity of E. marinus. A significant decrease in swimming distance was found in 500 μg/l NBBS and TPHP. We observed that the startle response in E. marinus had a latency period of >2 s and animals were assessed at 1 s and the sum of the first 5 s. There was a clear startle response in E. marinus during dark to light transition, evident with increased swimming distance. NBBS exposure significantly increased startle response at environmental concentrations, while significant effects were only seen in 500 μg/l TPHP at 5 s. We found no significant effects of DEHP and DBP on swimming behaviour at the concentrations assessed. The findings of this study affirm the necessity for a continuous review of plastic additives to combat adverse behavioural effects that may be transferable to the population levels.
Collapse
Affiliation(s)
- Bidemi Green-Ojo
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK.
| | - Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Marina Tenório Botelho
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK; Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, 05508-120 São Paulo, Brazil
| | - Henry Obanya
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK
| | - Lena Grinsted
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry 1 Street, Portsmouth, UK
| | - Mathew O Parker
- School of Pharmacy & Biomedical Science, White Swan Road, St. Michael's Building, Portsmouth, UK; Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, UK.
| |
Collapse
|
8
|
Jourdan J, El Toum Abdel Fadil S, Oehlmann J, Hupało K. Rapid development of increased neonicotinoid tolerance in non-target freshwater amphipods. ENVIRONMENT INTERNATIONAL 2024; 183:108368. [PMID: 38070438 DOI: 10.1016/j.envint.2023.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024]
Abstract
The comprehensive assessment of the long-term impacts of constant exposure to pollutants on wildlife populations remains a relatively unexplored area of ecological risk assessment. Empirical evidence to suggest that multigenerational exposure affects the susceptibility of organisms is scarce, and the underlying mechanisms in the natural environment have yet to be fully understood. In this study, we first examined the arthropod candidate species, Gammarus roeselii that - unlike closely related species - commonly occurs in many contaminated river systems of Central Europe. This makes it a suitable study organism to investigate the development of tolerances and phenotypic adaptations along pollution gradients. In a 96-h acute toxicity assay with the neonicotinoid thiacloprid, we indeed observed a successive increase in tolerance in populations coming from contaminated regions. This was accompanied by a certain phenotypic change, with increased investment into reproduction. To address the question of whether these changes are plastic or emerged from longer lasting evolutionary processes, we conducted a multigeneration experiment in the second part of our study. Here, we used closely-related Hyalella azteca and pre-exposed them for multiple generations to sublethal concentrations of thiacloprid in a semi-static design (one week renewal of media containing 0.1 or 1.0 µg/L thiacloprid). The pre-exposed individuals were then used in acute toxicity assays to see how quickly such adaptive responses can develop. Over only two generations, the tolerance to the neonicotinoid almost doubled, suggesting developmental plasticity as a plausible mechanism for the rapid adaptive response to strong selection factors such as neonicotinoid insecticides. It remains to be discovered whether the plasticity of rapidly developed tolerance is species-specific and explains why closely related species - which may not have comparable adaptive response capabilities - disappear in polluted habitats. Overall, our findings highlight the neglected role of developmental plasticity during short- and long-term exposure of natural populations to pollution. Moreover, our results show that even pollutant levels seven times lower than concentrations found in the study region have a clear impact on the developmental trajectories of non-target species.
Collapse
Affiliation(s)
- Jonas Jourdan
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13 D-60438, Frankfurt am Main, Germany.
| | - Safia El Toum Abdel Fadil
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Faculty of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20 D-21033, Hamburg, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13 D-60438, Frankfurt am Main, Germany
| | - Kamil Hupało
- Department of Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|