1
|
Huang B, Huang Y, Shen C, Fan L, Fu H, Liu Z, Sun Y, Wu B, Zhang J, Xin J. Roles of boron in preventing cadmium uptake by Capsicum annuum root tips: Novel insights from ultrastructural investigation and single-cell RNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177858. [PMID: 39631329 DOI: 10.1016/j.scitotenv.2024.177858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Sufficient boron (B) can reduce cadmium (Cd) accumulation in crops; however, the underlying mechanism remains unclear. Ultrastructural analysis and single-cell RNA sequencing were used to investigate the changes of the Casparian strip of hot pepper (Capsicum annuum L.) root tips exposed to Cd under different B supplements, lignin formation-related gene expression and regulation in the endodermis to deeper understand the molecular mechanisms by which B inhibits root Cd uptake. The results showed that the Casparian strip widths significantly increased in hot pepper root tips exposed to Cd under B-sufficient (B1Cd1) conditions compared to those under B-deficient conditions (B0Cd1). Additionally, more cerium precipitates, which indicate H2O2 accumulation, were observed in the Casparian strip region in B0Cd1 than that in B1Cd1. B supplementation markedly enhanced the expression of certain lignin formation-related genes only in the endodermis cells. These genes included transcription factor genes, WRKY (WRKY7/40/41/53) and ERF (ERF2/109), and two types of genes related to lignin formation, namely, PER genes (PER3/9/49/6472 and LAC3) and dirigent protein (DIR) genes (DIR16/21/24/25). It suggests that the main reason for B reducing Cd accumulation in hot peppers is that B-induced endodermal lignification of root tips under Cd exposure is beneficial to prevent Cd influx into the stele via the apoplastic pathway.
Collapse
Affiliation(s)
- Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yingying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ling Fan
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Huiling Fu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Zhilin Liu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yingfang Sun
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Bin Wu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jirong Zhang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
2
|
Lu Z, Yu M, Han X, Qiao G, Xu J, Wu L, Qiu W, Zhuo R. SpbZIP60 confers cadmium tolerance by strengthening the root cell wall compartmentalization in Sedum plumbizincicola. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135936. [PMID: 39321478 DOI: 10.1016/j.jhazmat.2024.135936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Cadmium (Cd) is a prominent heavy metal pollutant that inhibits plant growth and poses risks to human health. Sedum plumbizincicola, as a Cd/Zn/Pb hyperaccumulator species, exhibits robust resistance to heavy metals and effective enrichment capacities. In our previous study, overexpressing SpbZIP60 in Arabidopsis enhanced Cd tolerance; however, the underlying the molecular mechanism remains to be elucidated. Here, we identified SpbZIP60 as a representative Cd stress response factor with nuclear localization and transcriptional activation activity. SpbZIP60 underwent conservative splicing in response to endoplasmic reticulum (ER) stress, while its response to Cd stress is independent of the ER stress-mediated unfolded protein response pathway. Overexpression of SpbZIP60 in S. alfredii increased the Cd tolerance and antioxidant activity. Furthermore, SpbZIP60 increased the content of cell wall components and thickened cell wall under Cd stress. Transcriptome analysis indicated a significant enrichment of differentially expressed genes within the phenylpropanoid metabolism pathway. Besides, the binding of SpbZIP60 to the promoter region of SpBglu resulted in the activation of gene expression, thereby enhancing the process of lignin deposition. Collectively, our results elucidated a molecular regulatory model in which SpbZIP60 increased the thickness of the root cell wall to impede Cd entry into the cell, consequently improving Cd tolerance.
Collapse
Affiliation(s)
- Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China; Fujian Academy of Forestry Sciences, Fuzhou, Fujian 350012, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| |
Collapse
|
3
|
Yang X, Feng K, Wang G, Zhang S, Shi Q, Wang X, Song X, Dong S, Wen Y, Guo P, Wang Y, Zhao J, Yuan X, Ren J. Chitosan nanoparticles alleviate chromium toxicity by modulating metabolic homeostasis and promoting chromium sequestration in Zea mays L. Int J Biol Macromol 2024; 282:137322. [PMID: 39515685 DOI: 10.1016/j.ijbiomac.2024.137322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Chitosan nanoparticles (CSNPs) have been proposed as a potential alternative in alleviating chromium (Cr) toxicity. However, the mechanisms underlying remains poorly understood. This study investigates the effects of CSNPs on carbon/nitrogen metabolism, cell wall Cr binding capacity, and antioxidant activity in Zea mays L. under Cr stress. Cr stress decreased the total dry weight (DW) by 48.5 %. By contrast, the total DW was reduced by only 26.2 % in CSNPs-treated plants. Analysis of transcriptomic, enzyme activity, and metabolite content data, CSNPs-treated plants exhibited a higher level of relatively stable Carbon and Nitrogen metabolism than untreated plants. CSNPs application resulted in a substantial increase in the levels of sucrose and soluble protein by 78.0 % and 19.4 % in the leaves, and 60.0 % and 59.7 % in the roots, respectively. Meanwhile, CSNPs increased the contents of glutathione, phytochelatin, and cell wall polysaccharide. This increase resulted in a higher retention of Cr in vacuole and cell wall. Additionally, CSNPs alleviated the oxidative damage by improving antioxidant activity. Overall, our results suggest that CSNPs alleviates Cr toxicity by modulating metabolic homeostasis and promoting Cr sequestration in maize plants. This study provides new insights into the mechanisms underlying CSNPs-mediated Cr stress response with potential implications for crop production.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ke Feng
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Guo Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Shifang Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Qifeng Shi
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Xinru Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Xie Song
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Yinyuan Wen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Pingyi Guo
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Yuguo Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Juan Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| | - Jianhong Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| |
Collapse
|
4
|
Xie M, Feng Y, Zhao P, Nie Z, Liu H, Gao W, Li C, Sui F, Wang L, Qin S. Mechanism of foliar application of boron to alleviate cadmium toxicity in winter wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109264. [PMID: 39520906 DOI: 10.1016/j.plaphy.2024.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Our previous work shown that boron (B) can inhibit cadmium (Cd) absorption in winter wheat, while the mechanism is not well understood. In this study, the mechanism of foliage spray B on Cd uptake in Cd-contaminated farmland was characterized with three treatments: spraying distilled water (CK), spraying 0.3% B fertilizer (F0.3%), and spraying 0.6% B fertilizer (F0.6%). The spraying treatment was conducted during the jointing stage and booting stage, respectively. The objective was to investigate the impact of different concentrations of B fertilizer application on Cd content, yield, physiological biochemical response, Cd transporter in wheat. Results showed that the yield increased with increasing B spray concentration compared with CK treatment. The wheat yield increased by 1.29%∼12.50% under foliar B application. The Cd concentration in both shoot and root of wheat seedlings were significantly decreased with foliar application of B at jointing stage and booting stage. The Cd concentrations in root and seed were also decreased with B treatment at maturity stage, especially after treatment with F0.6%, the Cd absorption in wheat grains exhibited a significant reduction of 31.20%. In addition, foliar application of B significantly increased antioxidant enzyme activities, include APX, SOD, CAT, and POD. Compared with CK, the MDA content in leaves showed a significant decrease with 30.48%-50.14%, while the GSH content showed an increase with 76.32%-1.05%. The down-regulation of the uptake and transport genes (TaNramp5, TaLCT1 and TaHMA2) and the up-regulation of compartmentalization transport genes (TaTM20 and TaHMA3) may contribute to the reduction of Cd accumulation in shoot. Overall, our results suggest that foliar spraying of B could increase B accumulation and yield, and alleviate Cd toxicity by reducing Cd uptake, enhancing the antioxidant capacity, regulating the expression of Cd genes in wheat.
Collapse
Affiliation(s)
- Mengchan Xie
- College of Resources and Environment, Henan Agricultural University/Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Yifan Feng
- College of Resources and Environment, Henan Agricultural University/Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Peng Zhao
- College of Resources and Environment, Henan Agricultural University/Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Zhaojun Nie
- College of Resources and Environment, Henan Agricultural University/Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Hongen Liu
- College of Resources and Environment, Henan Agricultural University/Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Wei Gao
- College of Resources and Environment, Henan Agricultural University/Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Chang Li
- College of Resources and Environment, Henan Agricultural University/Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Fuqing Sui
- College of Resources and Environment, Henan Agricultural University/Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Long Wang
- College of Resources and Environment, Henan Agricultural University/Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Shiyu Qin
- College of Resources and Environment, Henan Agricultural University/Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Wang L, Liang Y, Liu S, Chen F, Ye Y, Chen Y, Wang J, Paterson DJ, Kopittke PM, Wang Y, Li C. Effect of silicon on the distribution and speciation of uranium in sunflower (Helianthus annuus). JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135433. [PMID: 39146584 DOI: 10.1016/j.jhazmat.2024.135433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/15/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
Sunflower (Helianthus annuus) can potentially be used for uranium (U) phytoremediation. However, the factors influencing the absorption of U and its subsequent distribution within plant tissues remain unclear, including the effect of silicon (Si) which is known to increase metal tolerance. Here, using hydroponics, the effect of Si on the distribution and speciation of U in sunflower was examined using synchrotron-based X-ray fluorescence and fluorescence-X-ray absorption near-edge spectroscopy. It was found that ∼88 % of U accumulates within the root regardless of treatments. Without the addition of Si, most of the U appeared to bind to epidermis within the roots, whereas in the leaves, U primarily accumulated in the veins. The addition of Si alleviated U phytotoxicity and decreased U concentration in sunflower by an average of 60 %. In the roots, Si enhanced U distribution in cell walls and impeded its entry into cells, likely due to increased callose deposition. In the leaves, Si induced the sequestration of U in trichomes. However, Si did not alter U speciation and U remained in the hexavalent form. These results provide information on U accumulation and distribution within sunflower, and suggest that Si could enhance plant growth under high U stress.
Collapse
Affiliation(s)
- Linlin Wang
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - Yanru Liang
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - Song Liu
- Northwest A&F University, College of Agronomy, Yangling 712100, China
| | - Fan Chen
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - Yin Ye
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - Yanlong Chen
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - Jingjing Wang
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - David J Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sustainability, St Lucia, Queensland 4072, Australia
| | - Yuheng Wang
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China.
| | - Cui Li
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China.
| |
Collapse
|
6
|
Wang Z, Zhang D, He Z, Luo Y, Wang H. Two cadmium-resistant bacteria Burkholderia contaminans HA09 and Arthrobacter humicola improve phytoremediation efficiency of cadmium in Ageratum conyzoides L. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121250. [PMID: 38833921 DOI: 10.1016/j.jenvman.2024.121250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/28/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
To investigate the impact and mechanism of Cd-tolerant bacteria in soil on promoting Cd accumulation in Ageratum conyzoides L., we verified the impact of inoculating two strains, B-1 (Burkholderia contaminans HA09) and B-7 (Arthrobacter humicola), on Cd accumulation in A. conyzoides through a pot experiment. Additionally, we investigated the dissolution of CdCO3 and nutrient elements, as well as the release of indoleacetic acid (IAA) by the two strains. The results showed that both strains can significantly improve the dissolution of CdCO3. Strains B-1 and B-7 had obvious effect of dissolving phosphorus, which was 5.63 and 2.76 times higher than that of the control group, respectively. Strain B-7 had significant effect of dissolution potassium, which was 1.79 times higher than that of the control group. Strains B-1 and B-7 had significant nitrogen fixation effect, which was 29.53 and 44.39 times higher than that of the control group, respectively. In addition, inoculating with strain B-1 and B-7 significantly increased the Cd extraction efficiency of A. conyzoides (by 114% and 45% respectively) through enhancing Cd accumulation and the biomass of A. conyzoides. Furthermore, the inoculation of strain B-1 and B-7 led to a significant increase in the activities of CAT and SOD, as well as the content of chlorophyll a and total chlorophyll in the leaves of A. conyzoides. To sum up, strain B-1 and B-7 can promote the phytoremediation efficiency of A. conyzoides on Cd by promoting the biomass and Cd accumulation of A. conyzoides.
Collapse
Affiliation(s)
- Zhongzhen Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Di Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Zhaohui He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yong Luo
- Yunnan Maochen Engineering Consulting Co. LTD, Kunming, 650301, China.
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
7
|
Wang Q, Zhou Q, Feng Y, Yang X. Foliar application protected vegetable against poisonous element cadmium and mitigated human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171915. [PMID: 38522551 DOI: 10.1016/j.scitotenv.2024.171915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Foliar application has been reported as an effective method to facilitate plant growth and mitigate cadmium (Cd) accumulation. However, the application of foliar fertilizers on plant production, Cd uptake and health risks of Solanaceae family remains unknown. In this study, four foliar fertilizers were applied to investigate their effects on the production, Cd accumulation and human health risk assessment of two varieties of pepper (Capsicum annuum L.) and eggplant (Solanum melongena L.), respectively. Compared with CK, the foliar application increased vegetable production to 104.16 %-123.70 % in peppers, and 100.83 %-105.17 % in eggplants, accordingly. The application of foliar fertilizers largely decreased Cd TF (transportation factor) by up to 23.32 % in JY, 18.37 % in GJ of pepper varieties, and up to 14.47 % in ZL, 15.24 % in HGR of eggplant varieties. Moreover, Cd BAF (bioaccumulation factor) also declined to different extents after the application of foliar fertilizers. As for human health risk assessments, foliar application diminished the hazard index (HI) and carcinogenic risk (CR) of both pepper and eggplant varieties. The results concluded that the application of composed foliar fertilizers was most effective, and could be a promising alternative for the improvement of vegetable production and mitigation of vegetable Cd accumulation and human health risks as well. The results further highlighted the understanding of foliar fertilizer application on vegetable production and health risks, which benefited better vegetable safe production and further guaranteed human health.
Collapse
Affiliation(s)
- Qiong Wang
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China.
| | - Qiyao Zhou
- Management Committee of Yancheng Economic and Technological Development Zone, Yancheng 224000, People's Republic of China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaoe Yang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
8
|
Ma Y, Jie H, Zhao L, He P, Lv X, Xu Y, Zhang Y, Xing H, Jie Y. BnXTH1 regulates cadmium tolerance by modulating vacuolar compartmentalization and the cadmium binding capacity of cell walls in ramie (Boehmeria nivea). JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134172. [PMID: 38569340 DOI: 10.1016/j.jhazmat.2024.134172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTH) are cell wall-modifying enzymes important in plant response to abiotic stress. However, the role of XTH in cadmium (Cd) tolerance in ramie remains largely unknown. Here, we identified and cloned BnXTH1, a member of the XTH family, in response to Cd stress in ramie. The BnXTH1 promoter (BnXTH1p) demonstrated that MeJA induces the response of BnXTH1p to Cd stress. Moreover, overexpressing BnXTH1 in Boehmeria nivea increased Cd tolerance by significantly increasing the Cd content in the cell wall and decreasing Cd inside ramie cells. Cadmium stress induced BnXTH1-expression and consequently increased xyloglucan endotransglucosylase (XET) activity, leading to high xyloglucan contents and increased hemicellulose contents in ramie. The elevated hemicellulose content increased Cd chelation onto the cell walls and reduced the level of intracellular Cd. Interestingly, overexpressing BnXTH1 significantly increased the content of Cd in vacuoles of ramie and vacuolar compartmentalization genes. Altogether, these results evidence that Cd stress induced MeJA accumulation in ramie, thus, activating BnXTH1 expression and increasing the content of xyloglucan to enhance the hemicellulose binding capacity and increase Cd chelation onto cell walls. BnXTH1 also enhances the vacuolar Cd compartmentalization and reduces the level of Cd entering the organelles and soluble solution.
Collapse
Affiliation(s)
- Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Hunan Academy of Forestry, Changsha 410004, Hunan, China
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Long Zhao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Pengliang He
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xueying Lv
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yan Xu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ying Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Hucheng Xing
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Changsha 410128, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Changsha 410128, China.
| |
Collapse
|
9
|
Chai S, Deng W, Yang J, Guo L, Wang L, Jiang Y, Liao J, Deng X, Yang R, Zhang Y, Lu Z, Wang X, Zhang L. Physiological and molecular mechanisms of ZnO quantum dots mitigating cadmium stress in Salvia miltiorrhiza. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134245. [PMID: 38603910 DOI: 10.1016/j.jhazmat.2024.134245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
This study delved into the physiological and molecular mechanisms underlying the mitigation of cadmium (Cd) stress in the model medicinal plant Salvia miltiorrhiza through the application of ZnO quantum dots (ZnO QDs, 3.84 nm). A pot experiment was conducted, wherein S. miltiorrhiza was subjected to Cd stress for six weeks with foliar application of 100 mg/L ZnO QDs. Physiological analyses demonstrated that compared to Cd stress alone, ZnO QDs improved biomass, reduced Cd accumulation, increased the content of photosynthetic pigments (chlorophyll and carotenoids), and enhanced the levels of essential nutrient elements (Ca, Mn, and Cu) under Cd stress. Furthermore, ZnO QDs significantly lowered Cd-induced reactive oxygen species (ROS) content, including H2O2, O2-, and MDA, while enhancing the activity of antioxidant enzymes (SOD, POD, APX, and GSH-PX). Additionally, ZnO QDs promoted the biosynthesis of primary and secondary metabolites, such as total protein, soluble sugars, terpenoids, and phenols, thereby mitigating Cd stress in S. miltiorrhiza. At the molecular level, ZnO QDs were found to activate the expression of stress signal transduction-related genes, subsequently regulating the expression of downstream target genes associated with metal transport, cell wall synthesis, and secondary metabolite synthesis via transcription factors. This activation mechanism contributed to enhancing Cd tolerance in S. miltiorrhiza. In summary, these findings shed light on the mechanisms underlying the mitigation of Cd stress by ZnO QDs, offering a potential nanomaterial-based strategy for enhancing Cd tolerance in medicinal plants.
Collapse
Affiliation(s)
- Songyue Chai
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Weihao Deng
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianping Yang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Linfeng Guo
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Long Wang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Jinqiu Liao
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China; College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuexue Deng
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Ruiwu Yang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China; College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Yunsong Zhang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
10
|
Dong Q, Wu Y, Wang H, Li B, Huang R, Li H, Tao Q, Li Q, Tang X, Xu Q, Luo Y, Wang C. Integrated morphological, physiological and transcriptomic analyses reveal response mechanisms of rice under different cadmium exposure routes. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133688. [PMID: 38310845 DOI: 10.1016/j.jhazmat.2024.133688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Rice (Oryza sativa) is one of the major cereal crops and takes up cadmium (Cd) more readily than other crops. Understanding the mechanism of Cd uptake and defense in rice can help us avoid Cd in the food chain. However, studies comparing Cd uptake, toxicity, and detoxification mechanisms of leaf and root Cd exposure at the morphological, physiological, and transcriptional levels are still lacking. Therefore, experiments were conducted in this study and found that root Cd exposure resulted in more severe oxidative and photosynthetic damage, lower plant biomass, higher Cd accumulation, and transcriptional changes in rice than leaf Cd exposure. The activation of phenylpropanoids biosynthesis in both root and leaf tissues under different Cd exposure routes suggests that increased lignin is the response mechanism of rice under Cd stress. Moreover, the roots of rice are more sensitive to Cd stress and their adaptation responses are more pronounced than those of leaves. Quantitative PCR revealed that OsPOX, OsCAD, OsPAL and OsCCR play important roles in the response to Cd stress, which further emphasize the importance of lignin. Therefore, this study provides theoretical evidence for future chemical and genetic regulation of lignin biosynthesis in crop plants to reduce Cd accumulation.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haidong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
He CT, Wang XS, Hu XX, Yuan J, Zhang QH, Tan XT, Wang YF, Tan X, Yang ZY. Phytochelatin-Mediated Cultivar-Dependent Cd Accumulations of Lactuca sativa and Implication for Cd Pollution-Safe Cultivars Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:715-725. [PMID: 38123485 DOI: 10.1021/acs.jafc.3c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cd pollution-safe cultivar (Cd-PSC) is a feasible strategy to minimize Cd contamination in leafy vegetables. The shoot Cd concentrations of 23 Lactuca sativa cultivars under Cd stress ranged from 0.124 to 2.155 mg·kg-1 with a maximum cultivar difference of 8 folds. Typical Cd-PSC C16 (L) and high-Cd-accumulating cultivar C13 (H) were screened to investigate the mechanisms of Cd accumulations in L. sativa through determining Cd concentrations, Cd subcellular distributions, phytochelatin profiles, and phytochelatin biosynthesis-related genes' expressions. Higher Cd distribution in a heat stable fraction in C13 (H) indicated that the high Cd accumulation trait of C13 (H) mainly depended on the Cd-phytochelatin complexes. Root phytochelatin concentrations were significantly elevated in C13 (H) (5.83 folds) than in C16 (L) (2.69 folds) (p < 0.05) under Cd stress. Significantly downregulated expressions of glutathione S-transferase rather than the regulation of phytochelatin synthesis genes in the root of C13 (H) might be responsible for sufficient glutathione supply for phytochelatins synthesis. These findings suggested that phytochelatin elevation in C13 (H) would favor the Cd root to shoot transportation, which provides new insights into the phytochelatin-related cultivar-dependent Cd accumulating characteristic in L. sativa.
Collapse
Affiliation(s)
- Chun-Tao He
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- School of Life Science, Sun Yat-sen University, Xingang Xi Road 135, Guangzhou 510275, China
| | - Xue-Song Wang
- Chinese Academy of Inspection and Quarantine, Greater Bay Area, Zhongshan 528437, China
| | - Xia-Xin Hu
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Ju Yuan
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Qian-Hui Zhang
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuan-Tong Tan
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yun-Fan Wang
- Chinese Academy of Inspection and Quarantine, Greater Bay Area, Zhongshan 528437, China
| | - Xiao Tan
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong-Yi Yang
- School of Life Science, Sun Yat-sen University, Xingang Xi Road 135, Guangzhou 510275, China
| |
Collapse
|