1
|
Paul T, Nath P, Tapadar S, Sultana S, Deb Purkayastha S, Sharma H, Rout J. Growth potential, biochemical properties and nutrient removal efficiency of some freshwater microalgae and their consortia from wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-11. [PMID: 39297543 DOI: 10.1080/15226514.2024.2405001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Impact of varying nitrate (NO3-N) and phosphate (PO4-P) concentrations and sewage water (SW) on the growth, nutrient removal, lipid accumulation, enzymatic antioxidant activity and phytochemical contents of the microalgae Scenedesmus dimorphus, Coelastrella tenuitheca, Chroococcus turgidus and Parachlorella kessleri under monoculture and their consortia have been investigated. High growth rates were observed for all the four algae in both mono and mixed culture conditions at enhanced concentrations of N (1500 mg/L NO3-N) and P (40 mg/L PO4-P). The species Scenedesmus dimorphus outperformed other microalgae growing in SW in efficiently removing nitrogen. The algal consortia of mixed species was found to be more effective in phosphorus removal. The carbohydrate and protein contents were highest in Parachlorella kessleri, about 37% and 44%, respectively, in SW cultivation. The algal consortia demonstrated highest starch content (4%) in nitrogen deprived growth medium. Highest lipid production (43%) was observed in the SW culture. The species Coelastrella tenuitheca, Chroococcus turgidus and Scenedesmus dimorphus irrespective of the growth media indicated significant accumulation of phenol, flavonoid and tannin. The DPPH, catalase and ascorbic peroxidase assay showed pronounced antioxidant activity. Nutrient (N and P) enrichment exhibited enhanced antioxidant enzymatic activity and accumulation of cell storage products.
Collapse
Affiliation(s)
- Tanushree Paul
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | - Pushpita Nath
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | - Shahnaj Tapadar
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | - Sakiba Sultana
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | | | - Himangshu Sharma
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| | - Jayashree Rout
- Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India
| |
Collapse
|
2
|
Wichaphian A, Kaewman N, Pathom-Aree W, Phinyo K, Pekkoh J, Chromkaew Y, Cheirsilp B, Srinuanpan S. Zero-waste biorefining co-products from ultrasonically assisted deep eutectic solvent-pretreated Chlorella biomass: Sustainable production of biodiesel and bio-fertilizer. BIORESOURCE TECHNOLOGY 2024; 408:131163. [PMID: 39079573 DOI: 10.1016/j.biortech.2024.131163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Microalgal biomass is gaining increasing attention to produce high-value co-products. This study proposes integrating Chlorella microalgal biomass into a zero-waste biorefining system, aiming to produce biodiesel and biofertilizer. It investigates optimal conditions for ultrasound-assisted deep eutectic solvent (DES) pretreatment and lipid recovery to enhance the extraction of lipids. Optimal DES pretreatment was identified as a 1.6:1 acetic acid-to-choline chloride molar ratio, 0.36 g biomass loading, and 2.50 min of pretreatment. Lipid recovery succeeded with a 10-minute extraction time and a 1:3 methanol-to-butanol volume ratio. These conditions yielded biodiesel-quality lipids at 139.52 mg/g microalgal biomass with superior fuel characteristics. The de-oiled microalgal biomass residue exhibited promise as a lettuce biofertilizer, enhancing photosynthetic pigments but potentially reducing yields by 40 %. The study also notes changes in rhizosphere microbial communities, indicating both stimulatory and inhibitory effects on beneficial microbes. This study has the potential to enhance sustainability in energy, agriculture, and the environment.
Collapse
Affiliation(s)
- Antira Wichaphian
- Master of Science Program in Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitiphong Kaewman
- Master of Science Program in Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yupa Chromkaew
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, International Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Microbial Biorefinery and Biochemical Process Engineering Research Group, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Ruales E, Gómez-Serrano C, Morillas-España A, González-López C, Escolà Casas M, Matamoros V, Garfí M, Ferrer I. Resource recovery and contaminants of emerging concern mitigation by microalgae treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121950. [PMID: 39068780 DOI: 10.1016/j.jenvman.2024.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
This study aimed to investigate the recovery of agricultural biostimulants and biogas from microalgae treating wastewater, in the framework of a circular bioeconomy. To this end, municipal wastewater was treated in demonstrative raceway ponds, and microalgal biomass (Scenedesmus sp.) was then harvested and downstream processed to recover biostimulants and biogas in a biorefinery approach. The effect of microalgal biostimulants on plants was evaluated by means of bioassays, while the biogas produced was quantified in biochemical methane potential (BMP) tests. Furthermore, the fate of contaminants of emerging concern (CECs) over the process was also assessed. Bioassays confirmed the biostimulant effect of microalgae, which showed gibberellin-, auxin- and cytokinin-like activity in watercress seed germination, mung bean rooting, and wheat leaf chlorophyll retention. In addition, the downstream process applied to raw biomass acted as a pre-treatment to enhance anaerobic digestion performance. After biostimulant extraction, the residual biomass represented 91% of the methane yield from the raw biomass (276 mLCH4·g-1VS). The kinetic profile of the residual biomass was 43% higher than that of the unprocessed biomass. Co-digestion with primary sludge further increased biogas production by 24%. Finally, the concentration of CECs in wastewater was reduced by more than 80%, and only 6 out of 22 CECs analyzed were present in the biostimulant obtained. Most importantly, the concentration of those contaminants was lower than in biosolids that are commonly used in agriculture, ensuring environmental safety.
Collapse
Affiliation(s)
- Evelyn Ruales
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Cintia Gómez-Serrano
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Ainoa Morillas-España
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Cynthia González-López
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
4
|
Liu XY, Hong Y, Zhang YW, Li LH. Valorization of treated swine wastewater and generated biomass by microalgae: Their effects and salt tolerance mechanisms on wheat seedling growth. ENVIRONMENTAL RESEARCH 2024; 251:118664. [PMID: 38499222 DOI: 10.1016/j.envres.2024.118664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The extensive use of mineral fertilizers has a negative impact on the environment, whereas wastewater and microalgal biomass can provide crops with nutrients such as nitrogen, phosphorus, and potassium, and have the potential to be used as a source of fertilizers in circular agriculture. In this study, a step-by-step resource utilization study of algae-containing wastewater generated from microalgae treatment of swine wastewater was carried out. When wheat seedlings were cultivated in the effluent after microalgae separation, the root fresh weight, seedling fresh weight, and total seedling length were increased by 3.44%, 14.45%, and 13.64%, respectively, compared with that of the algae-containing wastewater, and there was no significant difference in seedling fresh weight, total seedling length, maximum quantum yields of PSII photochemistry (Fv/Fm), and performance index (PIABS) from that of the Hogland solution group, which has the potential to be an alternative liquid fertilizer. Under salt stress, microalgae extract increased the contents of GA3, IAA, ABA, and SA in wheat seedlings, antioxidant enzymes maintained high activity, and the PIABS value increased. Low-dose microalgae extract (1 mL/L) increased the root fresh weight, seedling fresh weight, longest seedling length, and total seedling length by 30.73%, 31.28%, 16.43%, and 28.85%, respectively. Algae extract can act as a plant biostimulant to regulate phytohormone levels to attenuate the damage of salt stress and promote growth.
Collapse
Affiliation(s)
- Xiao-Ya Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Yue-Wen Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li-Hua Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Huang KX, Mao BD, Lu MM, Chen DZ, Qiu J, Gao F. Effect of external acetate added in aquaculture wastewater on mixotrophic cultivation of microalgae, nutrient removal, and membrane contamination in a membrane photobioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119391. [PMID: 37890297 DOI: 10.1016/j.jenvman.2023.119391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
The mixotrophic cultivation of microalgae in wastewater has attracted extensive attention due to its many advantages. In this study, acetate, which can be prepared by hydrolysis of aquaculture waste, was used as exogenous organic matter to promote the growth of Chlorella pyrenoidosa cultured in aquaculture wastewater. Microalgae cultivation was carried out in a membrane photobioreactor (MPBR) with continuous inflow and outflow mode. The results showed that exogenous acetate greatly promoted the mixotrophic growth of C. pyrenoidosa. When the dosage of acetate reached 1.0 g L-1, the relative growth rate of microalgae in the logarithmic stage reached 0.31 d-1, which was 4.4 times that of the control. As a result, exogenous acetate also promoted the removal of nutrients from aquaculture wastewater. During the stable operation stage of the MPBR with acetate added in the influent, an average of 87.41%-93.93% nitrogen and 76.34%-88.55% phosphorus was removed from the aquaculture wastewater containing 19.41 mg L-1 total inorganic nitrogen and 1.31 mg L-1 total inorganic phosphorus. However, it was worth noting that adding exogenous acetate also led to an increase in the membrane resistance of the membrane module in the MPBR. Membrane resistance was mainly composed of internal resistance (Ri) and cake resistance (Rc), and with the increase of acetate content in the influent, their proportion in the total resistance gradually increased. Ri contributed the major membrane resistance and was most affected by acetate dosage. Ri reached 32.04 × 1012 m-1 with 1 g L-1 acetate, which accounted for 69.49% of total resistance. Moreover, with the increase of influent acetate concentration of the MPBRs, both the number of insoluble contaminants and dissolved organic contaminants in the membrane modules increased. In addition, the composition of proteins, polysaccharides, and humus in dissolved organic contaminants was close to that in extracellular polymeric substances and soluble microbial products secreted by microalgae. These results suggested that the membrane fouling of membrane modules was closely related to the algal biomass content in the MPBRs. The above results provided a theoretical basis for reducing membrane fouling of MPBR.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Bing-Di Mao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Miao-Miao Lu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jian Qiu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
6
|
Sánchez-Quintero Á, Fernandes SCM, Beigbeder JB. Overview of microalgae and cyanobacteria-based biostimulants produced from wastewater and CO 2 streams towards sustainable agriculture: A review. Microbiol Res 2023; 277:127505. [PMID: 37832502 DOI: 10.1016/j.micres.2023.127505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
For a long time, marine macroalgae (seaweeds) have been used to produce commercial biostimulants in order to ensure both productivity and quality of agricultural crops under abiotic stress. With similar biological properties, microalgae have slowly attracted the scientific community and the biostimulant industry, in particular because of their ability to be cultivated on non-arable lands with high biomass productivity all year long. Moreover, the recent strategies of culturing these photosynthetic microorganisms using wastewater and CO2 opens the possibility to produce large quantity of biomass at moderate costs while integrating local and circular economy approaches. This paper aims to provide a state of the art review on the development of microalgae and cyanobacteria based biostimulants, focusing on the different cultivation, extraction and application techniques available in the literature. Emphasis will be placed on microalgae and cyanobacteria cultivation using liquid and gaseous effluents as well as emerging green-extraction approaches, taking in consideration the actual European regulatory framework.
Collapse
Affiliation(s)
- Ángela Sánchez-Quintero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France; MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64 600 Anglet, France; APESA, Pôle valorisation, 3 chemin de Sers, 64121 Montardon, France
| | - Susana C M Fernandes
- Universite de Pau et des Pays de l'Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France; MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64 600 Anglet, France.
| | | |
Collapse
|