1
|
Huang L, Chen W, Wei L, Li X, Huang Y, Huang Q, Liu C, Liu Z. Biochar Blended with Alkaline Mineral Can Better Inhibit Lead and Cadmium Uptake and Promote the Growth of Vegetables. PLANTS (BASEL, SWITZERLAND) 2024; 13:1934. [PMID: 39065461 PMCID: PMC11280933 DOI: 10.3390/plants13141934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Three successive vegetable pot experiments were conducted to assess the effects on the long-term immobilization of heavy metals in soil and crop yield improvement after the addition of peanut shell biochar and an alkaline mineral to an acidic soil contaminated with lead and cadmium. Compared with the CK treatment, the change rates of biomass in the edible parts of the three types of vegetables treated with B0.3, B1, B3, B9, R0.2 and B1R0.2 were -15.43%~123.30%, 35.10%~269.09%, 40.77%~929.31%, -26.08%~711.99%, 44.14%~1067.12% and 53.09%~1139.06%, respectively. The cadmium contents in the edible parts of the three vegetables treated with these six additives reduced by 2.08%~13.21%, 9.56%~24.78%, 9.96%~35.61%, 41.96%~78.42%, -4.19%~57.07% and 12.43%~65.92%, respectively, while the lead contents in the edible parts reduced by -15.70%~59.47%, 6.55%~70.75%, 3.40%~80.10%, 55.26%~89.79%, 11.05%~70.15% and 50.35%~79.25%, respectively. Due to the increases in soil pH, soil cation-exchange capacity and soil organic carbon content, the accumulation of Cd and Pb in the vegetables was most notably reduced with a high dosage of 9% peanut shell biochar alone, followed by the addition of a low dosage of 1% peanut shell biochar blended with 0.2% alkaline mineral. Therefore, the addition of a low dosage of 1% peanut shell biochar blended with 0.2% alkaline mineral was the best additive in increasing the vegetable biomass, whereas the addition of 9% peanut shell biochar alone was the worst. Evidently, the addition of 0.2% alkaline mineral can significantly reduce the amount of peanut shell needed for passivating heavy metals in soil, while it also achieves the effect of increasing the vegetable yield.
Collapse
Affiliation(s)
- Lianxi Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Weisheng Chen
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Lan Wei
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Xiang Li
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Yufen Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Qing Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Chuanping Liu
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China;
| | - Zhongzhen Liu
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| |
Collapse
|
2
|
He D, Luo Y, Zhu B. Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171259. [PMID: 38417524 DOI: 10.1016/j.scitotenv.2024.171259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The use of biochar for soil improvement and emission reduction has been widely recognized for its excellent performance. However, the choice of feedstock and pyrolysis temperature for biochar production significantly affects its surface parameters and interactions with soil substances. In this study, we retrieved 465 peer-reviewed papers on the application of biochar in reducing greenhouse gas emissions and nutrient losses in soil and analyzed the changes in biochar physicochemical parameters from different feedstock and pyrolytic temperatures. Molecular simulation computing technology was also used to explore the impacts of these changes on the interaction between biochar and soil substances. The statistical results from the peer-reviewed papers indicated that biochar derived from wood-based feedstock exhibits superior physical characteristics, such as increased porosity and specific surface area. Conversely, biochar derived from straw-based feedstock was found to contain excellent element content, such as O, N, and H, and biochar derived from straw and produced at low pyrolysis temperatures contains a significant number of functional groups that enhance the charge transfer potential and adsorption stability by increasing surface charge density, charge distribution and bonding orbitals. However, it should be noted that this enhancement may also activate certain recalcitrant C compounds and promote biochar decomposition. Taken together, these results have significant implications for biochar practitioners when selecting suitable feedstock and pyrolysis temperatures based on agricultural needs and increasing their understanding of the interaction mechanism between biochar and soil substances.
Collapse
Affiliation(s)
- Debo He
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Luo
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Yang L, Liang H, Wu Q, Shen P. Biochar alleviated the toxic effects of microplastics-contaminated geocarposphere soil on peanut (Arachis hypogaea L.) pod development: roles of pod nutrient metabolism and geocarposphere microbial modulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2990-3001. [PMID: 38050830 DOI: 10.1002/jsfa.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND The accumulation of microplastics in agricultural soil poses a threat to the sustainability of agriculture, impacting crop growth and soil health. Due to the geocarpy feature of peanut, geocarposphere soil environment is critical to pod development and its nutritional quality. While the effects of microplastics in the rhizosphere have been studied, their impact on peanut pod in the geocarposphere remains unknown. Biochar has emerged as a potential soil agent with the ability to remediate soil contamination. However, the mechanisms of biochar in mitigating the toxic effects of microplastics-contaminated geocarposphere soil on peanut pod development remain largely unexplored. RESULTS We evaluated the peanut pod performance and microbiome when facing microplastics contamination and biochar amendment in geocarposphere soil. The results showed that microplastics present in geocarposphere soil could directly enter the peanut pod, cause pod developmental disorder and exert adverse effects on nutritional quality. Aberrant expression of key genes associated with amino acid metabolism, lipid synthesis, and auxin and ethylene signaling pathways were the underlying molecular mechanisms of microplastics-induced peanut pod developmental inhibition. However, these expression abnormalities could be reversed by biochar application. In addition, peanut geocarposphere microbiome results showed that biochar application could restore the diversity of microbial communities inhibited by microplastics contamination and promote the relative abundance of bacteria correlated with pathogen resistance and nitrogen cycle of geocarposphere soil, further promoting peanut pod development. CONCLUSION This study demonstrated that biochar application is an effective strategy to mitigate the toxic effects of microplastics-contaminated geocarposphere soil on pod development and nutritional quality. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liyu Yang
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Haiyan Liang
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Qi Wu
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Pu Shen
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
4
|
Dou W, Xiao B, Revillini D, Delgado-Baquerizo M. Biocrusts enhance soil organic carbon stability and regulate the fate of new-input carbon in semiarid desert ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170794. [PMID: 38336052 DOI: 10.1016/j.scitotenv.2024.170794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Given their global prevalence, dryland (including hyperarid, arid, semiarid, and dry subhumid regions) ecosystems are critical for supporting soil organic carbon (SOC) stocks, with even small changes in such SOC pools affecting the global carbon (C) cycling. Biocrusts play an essential role in supporting C cycling in semiarid ecosystems. However, the influence of biocrusts and their successional stages on SOC and its fraction contents, as well as their role in regulating new input C into SOC fractions remain largely unknown. In this study, we collected continuous samples of bare soil (BS) and three successional stages of biocrust soils (cyanobacterial (CC), low-cover moss (LM), and high-cover moss (HM)) at 0-5 cm depth every month for one year in a semiarid desert ecosystem. We analyzed SOC changes among the samples and their fraction contents including: labile organic C (LOC) (composed of microbial biomass C (MBC), dissolved organic C (DOC), and easily oxidized organic C (EOC)) and recalcitrant organic C (ROC) fractions, soil nutrient content including: ammonium (NH4+-N), nitrate (NO3--N), and available phosphorus (AP), and soil temperature and moisture. We also conducted a 13C pulse-labelling experiment in the field to accurately quantify the effects of biocrust successional stage on exogenous C allocation to SOC fractions. Our results showed that the three successional stages of biocrust (CC-LM-HM) increased SOC and ROC contents by an average of 5.3 ± 3.6 g kg-1 and 4.0 ± 3.0 g kg-1, respectively; and the MBC, DOC, and EOC contents increased by an average of 41.7 ± 24.8 mg kg-1, 28.7 ± 12.6 mg kg-1, and 1.2 ± 0.6 g kg-1, respectively, compared to that of BS. These increases were attributed to an increase in photosynthetic pigment content, higher nutrient levels, and more suitable microclimates (e.g., higher moisture and more moderate temperature) during biocrust succession. More importantly, SOC stability was greatly improved with biocrust succession from cyanobacteria to moss, as evidenced by the reduction in soil EOC:SOC and EOC:ROC ratios by an average of 50 ± 34 % and 99 ± 67 %, respectively, while the ROC:SOC ratio increased by 33 ± 16 % with biocrust succession compared to those of BS. The biocrust SOC, DOC, and MBC 13C contents at different stages were on average 0.096 ± 0.034 mg kg-1, 0.010 ± 0.005 mg kg-1, and 0.014 ± 0.005 mg kg-1 higher than those of BS. Similarly, the allocation of new-input C among the DOC and MBC at different biocrust stages (19 ± 10 %) was significantly higher than that of BS (9 ± 6 %). New-input C into the biocrusts was fixed by microbes (43 ± 18 %) within ∼10 days and converted into other forms of C (85 ± 5 %) after 80 days. Our study provides a new perspective on how biocrusts support C cycling in semiarid desert ecosystems by mediating new C inputs into diverse fractional contents, and highlights the significance of biocrust successional stages in maintaining soil C stocks and stability in the dryland soil system.
Collapse
Affiliation(s)
- Weiqiang Dou
- Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bo Xiao
- Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing 100193, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China.
| | - Daniel Revillini
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville 41013, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville 41013, Spain
| |
Collapse
|
5
|
Liu H, Li C, Lin Y, Chen YJ, Zhang ZJ, Wei KH, Lei M. Biochar and organic fertilizer drive the bacterial community to improve the productivity and quality of Sophora tonkinensis in cadmium-contaminated soil. Front Microbiol 2024; 14:1334338. [PMID: 38260912 PMCID: PMC10800516 DOI: 10.3389/fmicb.2023.1334338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Excessive Cd accumulation in soil reduces the production of numerous plants, such as Sophora tonkinensis Gagnep., which is an important and widely cultivated medicinal plant whose roots and rhizomes are used in traditional Chinese medicine. Applying a mixture of biochar and organic fertilizers improved the overall health of the Cd-contaminated soil and increased the yield and quality of Sophora. However, the underlying mechanism between this mixed fertilization and the improvement of the yield and quality of Sophora remains uncovered. This study investigated the effect of biochar and organic fertilizer application (BO, biochar to organic fertilizer ratio of 1:2) on the growth of Sophora cultivated in Cd-contaminated soil. BO significantly reduced the total Cd content (TCd) in the Sophora rhizosphere soil and increased the soil water content, overall soil nutrient levels, and enzyme activities in the soil. Additionally, the α diversity of the soil bacterial community had been significantly improved after BO treatment. Soil pH, total Cd content, total carbon content, and dissolved organic carbon were the main reasons for the fluctuation of the bacterial dominant species. Further investigation demonstrated that the abundance of variable microorganisms, including Acidobacteria, Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi, Gemmatimonadetes, Patescibacteria, Armatimonadetes, Subgroups_ 6, Bacillus and Bacillus_ Acidiceler, was also significantly changed in Cd-contaminated soil. All these alterations could contribute to the reduction of the Cd content and, thus, the increase of the biomass and the content of the main secondary metabolites (matrine and oxymatrine) in Sophora. Our research demonstrated that the co-application of biochar and organic fertilizer has the potential to enhance soil health and increase the productivity and quality of plants by regulating the microorganisms in Cd-contaminated soil.
Collapse
Affiliation(s)
- Han Liu
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Cui Li
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yang Lin
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yi-jian Chen
- The Third Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhan-jiang Zhang
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Kun-hua Wei
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ming Lei
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|