1
|
Yang N, Zhang Y, Yang N, Men C, Zuo J. Distribution characteristics and relationship of microplastics, phthalate esters, and bisphenol A in the Beiyun River basin of Beijing. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136190. [PMID: 39490169 DOI: 10.1016/j.jhazmat.2024.136190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Urban rivers are closely related to human life, and due to the widespread use of plastic products, rivers have become important carriers of pollutants such as microplastics (MP), phthalate esters (PAEs), and bisphenol A (BPA). However, our understanding of the distribution characteristics and relationships of MP, PAEs, and BPA in rivers is limited. In this study, MP, six PAEs and BPA were detected in the water and sediments of the Beiyun River basin. Polyvinyl chloride (PVC) was the most abundant type of microplastic, while di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were the most abundant PAEs. MP, PAEs, and BPA in both water and sediment showed positive correlations, with stronger correlations and higher pollution levels in sediment than in water. The tendency for PAE congeners to partition into sediments increased with a higher octanol-water partition coefficient (Kow). There was a significant positive correlation between the distribution tendency of ∑6PAEs and TOC in sediments with a pearson correlation coefficient of 0.717. Rivers with more frequent human activities and higher levels of urbanization in the vicinity had a higher abundance of various pollutants and a greater diversity of MP types.
Collapse
Affiliation(s)
- Nina Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Nijuan Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
| | - Cong Men
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrialpollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Anandavelu I, Karthik R, Robin RS, Hariharan G, Mugilarasan M, Ramesh R, Purvaja R. Morphometric characteristics and spatiotemporal heterogeneity of microplastics on the north-east coast of India. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136180. [PMID: 39427351 DOI: 10.1016/j.jhazmat.2024.136180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The study analysed microplastics (MPs) in surface waters along the north-east coast of India and focused on the spatiotemporal distribution and morphometric characteristics of 800 particles for environmental insights. The MPs were consistently present in all water masses, with an average abundance of 0.67 ± 0.66 particles/m3 during the monsoon and 0.12 ± 0.08 particles/m3 post-monsoon. Fragments and fibers were dominant in both seasons, comprising over 83 % and 12 %, respectively. In terms of colours, blue was significantly dominant during the post-monsoon (H, χ2 (5) = 15.38, p < 0.01); however, such variation was absent during the monsoon. Spatially, significant variance in abundance (F4, 34 = 8.542; p < 0.01) and across colours and forms during the monsoon was correlated with land-based inputs from the Hooghly River. FTIR analysis revealed ten polymer types, predominantly polyethylene (44 %). SEM observations indicated that 80 % of particles exhibited polymer ageing from oxidative weathering. The size distribution of MPs varied notably, with a higher proportion of < 0.3 mm (16.7 %) during the monsoon, possibly due to increased particle disintegration. The study noted MPs had low to moderate circularity, with increased irregularity during the monsoon due to heavy precipitation and river flushing. An initial risk assessment of MP pollution in surface waters on the north-east coast revealed a low-risk state. Acrylonitrile butadiene styrene (ABS) was identified as the most hazardous MP polymer. A wide range of toxic trace elements were found in MPs in these waters. The findings from the study deepen our knowledge of MPs and their fate in the pelagic zone, which supports the development of science-based policies that effectively reduce MP pollution.
Collapse
Affiliation(s)
- I Anandavelu
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Karthik
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India.
| | - G Hariharan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| |
Collapse
|
3
|
Ventura E, Marín A, Gámez-Pérez J, Cabedo L. Recent advances in the relationships between biofilms and microplastics in natural environments. World J Microbiol Biotechnol 2024; 40:220. [PMID: 38809290 PMCID: PMC11136731 DOI: 10.1007/s11274-024-04021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Plastic pollution in the form of microplastics (MPs), poses a significant threat to natural ecosystems, with detrimental ecological, social, and economic impacts. This review paper aims to provide an overview of the existing research on the interaction between microbial biofilms and MPs in natural environments. The review begins by outlining the sources and types of MPs, emphasizing their widespread presence in marine, freshwater, and terrestrial ecosystems. It then discusses the formation and characteristics of microbial biofilms on MPs surfaces, highlighting their role in altering the physicochemical properties of MPs and facilitating processes such as vertical transport, biodegradation, dispersion of microorganisms, and gene transfer. Different methods used to assess these interactions are discussed, including microbiological and physicochemical characterization. Current gaps and challenges in understanding the complex relationships between biofilms and MPs are identified, highlighting the need for further research to elucidate the mechanisms underlying these complex interactions and to develop effective mitigation strategies. Innovative solutions, including bioremediation techniques and their combination with other strategies, such as nanotechnology, advanced filtration technologies, and public awareness campaigns, are proposed as promising approaches to address the issue of MPs pollution. Overall, this review underscores the urgent need for a multidisciplinary approach to combating MPs pollution, combining scientific research, technological innovation, and public engagement to safeguard the health and integrity of natural ecosystems.
Collapse
Affiliation(s)
- Eva Ventura
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain
| | - Anna Marín
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain
| | - José Gámez-Pérez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain.
| |
Collapse
|
4
|
Ladewig SM, Bianchi TS, Coco G, Ferretti E, Gladstone-Gallagher RV, Hillman J, Hope JA, Savage C, Schenone S, Thrush SF. Polyester microfiber impacts on coastal sediment organic matter consumption. MARINE POLLUTION BULLETIN 2024; 202:116298. [PMID: 38581733 DOI: 10.1016/j.marpolbul.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
As plastic pollution continues to accumulate at the seafloor, concerns around benthic ecosystem functionality heightens. This research demonstrates the systematic effects of polyester microfibers on seafloor organic matter consumption rates, an important benthic ecosystem function connected to multiple reactions and processes. We used a field-based assay to measure the loss of organic matter, both with and without polyester microfiber contamination. We identified sediment organic matter content, mud content, and mean grain size as the main drivers of organic matter consumption, however, polyester microfiber contamination decoupled ecosystem relationships and altered observed organic matter cycling dynamics. Organic matter consumption rates varied across horizontal and vertical spaces, highlighting that consumption and associated plastic effects are dependent on environmental heterogeneity at both small (within sites) and larger (between sites) scales. Our results emphasize the important role habitat heterogeneity plays in seafloor organic matter consumption and the associated effects of plastic pollution on ecosystem function.
Collapse
Affiliation(s)
- Samantha M Ladewig
- University of Auckland, Institute of Marine Science, Private Bag 92019, Auckland 1010, New Zealand.
| | - Thomas S Bianchi
- University of Florida, Dept. of Geological Sciences, Gainesville, FL 32611-2120, USA
| | - Giovanni Coco
- University of Auckland, School of Environment, Private Bag 92019, Auckland 1010, New Zealand
| | - Eliana Ferretti
- University of Auckland, Institute of Marine Science, Private Bag 92019, Auckland 1010, New Zealand
| | | | - Jenny Hillman
- University of Auckland, Institute of Marine Science, Private Bag 92019, Auckland 1010, New Zealand
| | - Julie A Hope
- Scottish Oceans Institute, School of Biology, The University of St Andrews, St Andrews KY16 9AJ, United Kingdom
| | - Candida Savage
- University of Otago, Department of Marine Science, Dunedin 9054, New Zealand; University of Cape Town, Marine Research Institute and Department of Biological Sciences, Rondebosch 7700, South Africa
| | - Stefano Schenone
- University of Auckland, Institute of Marine Science, Private Bag 92019, Auckland 1010, New Zealand
| | - Simon F Thrush
- University of Auckland, Institute of Marine Science, Private Bag 92019, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Ghanadi M, Padhye LP. Revealing the long-term impact of photodegradation and fragmentation on HDPE in the marine environment: Origins of microplastics and dissolved organics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133509. [PMID: 38232551 DOI: 10.1016/j.jhazmat.2024.133509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
The extensive usage of high-density polyethylene (HDPE) materials in marine environments raises concerns about their potential contribution to plastic pollution. Various factors contribute to the degradation of HDPE in marine environments, including UV radiation, seawater hydrolysis, biodegradation, and mechanical stress. Despite their supposed long lifespans, there is still a lack of understanding about the long-term degradation mechanisms that cause weathering of seawater-exposed HDPE products. In this research, the impact of UV radiation on the degradation of HDPE pile sleeves was studied in natural as well as laboratory settings to isolate the UV effect. After nine years of exposure to the marine environment in natural settings, the HDPE pile sleeves exhibited an increase in oxygen-containing surface functional groups and more morphological changes compared to accelerated UVB irradiation in the laboratory. This indicated that combined non-UV mechanisms may play a major role in HDPE degradation than UV irradiation alone. However, UVB irradiation was found to release dissolved organic carbon and total dissolved nitrogen from HDPE pile sleeves, reaching levels of up to 15 mg/L and 2 mg/L, respectively. Our findings underscore the significance of taking into account both UV and non-UV degradation mechanisms when evaluating the role of HDPE in contributing to marine plastic pollution.
Collapse
Affiliation(s)
- Mahyar Ghanadi
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1010, New Zealand.
| |
Collapse
|