1
|
Mohamed Saini S, Bousman CA, Mancuso SG, Cropley V, Van Rheenen TE, Lenroot RK, Bruggemann J, Weickert CS, Weickert TW, Sundram S, Everall IP, Pantelis C. Genetic variation in glutamatergic genes moderates the effects of childhood adversity on brain volume and IQ in treatment-resistant schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:59. [PMID: 37709784 PMCID: PMC10502098 DOI: 10.1038/s41537-023-00381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Affiliation(s)
- Suriati Mohamed Saini
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia.
- Department of Psychiatry, Hospital Canselor Tuanku Muhriz, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia.
| | - Chad A Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Psychiatry, and Physiology and Pharmacology, The University of Calgary, Calgary, AB, Canada
| | - Serafino G Mancuso
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Melbourne, VIC, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Melbourne, VIC, Australia
| | - Rhoshel K Lenroot
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Department of Psychiatry and Behavioural Science, University of New Mexico, Albuquerque, NM, USA
| | - Jason Bruggemann
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- Schizophrenia Research Institute, Sydney, NSW, Australia
| | - Cynthia S Weickert
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, NY, USA
- Schizophrenia Research Laboratory, Neuroscience Research Australia, NSW, Australia
| | - Thomas W Weickert
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, NY, USA
| | - Suresh Sundram
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Monash Medical Centre, Monash Health, Clayton, VIC, Australia
| | - Ian P Everall
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Western Centre for Health Research & Education, Sunshine Hospital, Western Health, St Albans, VIC, 3021, Australia
| |
Collapse
|
2
|
Pietschnig J, Gerdesmann D, Zeiler M, Voracek M. Of differing methods, disputed estimates and discordant interpretations: the meta-analytical multiverse of brain volume and IQ associations. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211621. [PMID: 35573038 PMCID: PMC9096623 DOI: 10.1098/rsos.211621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/19/2022] [Indexed: 05/03/2023]
Abstract
Brain size and IQ are positively correlated. However, multiple meta-analyses have led to considerable differences in summary effect estimations, thus failing to provide a plausible effect estimate. Here we aim at resolving this issue by providing the largest meta-analysis and systematic review so far of the brain volume and IQ association (86 studies; 454 effect sizes from k = 194 independent samples; N = 26 000+) in three cognitive ability domains (full-scale, verbal, performance IQ). By means of competing meta-analytical approaches as well as combinatorial and specification curve analyses, we show that most reasonable estimates for the brain size and IQ link yield r-values in the mid-0.20s, with the most extreme specifications yielding rs of 0.10 and 0.37. Summary effects appeared to be somewhat inflated due to selective reporting, and cross-temporally decreasing effect sizes indicated a confounding decline effect, with three quarters of the summary effect estimations according to any reasonable specification not exceeding r = 0.26, thus contrasting effect sizes were observed in some prior related, but individual, meta-analytical specifications. Brain size and IQ associations yielded r = 0.24, with the strongest effects observed for more g-loaded tests and in healthy samples that generalize across participant sex and age bands.
Collapse
Affiliation(s)
- Jakob Pietschnig
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Austria
| | - Daniel Gerdesmann
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Austria
- Department of Physics Education, Faculty of Mathematics, Natural Sciences and Technology, University of Education Freiburg, Germany
| | - Michael Zeiler
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Martin Voracek
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Austria
| |
Collapse
|
3
|
Karantonis JA, Carruthers SP, Rossell SL, Pantelis C, Hughes M, Wannan C, Cropley V, Van Rheenen TE. A Systematic Review of Cognition-Brain Morphology Relationships on the Schizophrenia-Bipolar Disorder Spectrum. Schizophr Bull 2021; 47:1557-1600. [PMID: 34097043 PMCID: PMC8530395 DOI: 10.1093/schbul/sbab054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nature of the relationship between cognition and brain morphology in schizophrenia-spectrum disorders (SSD) and bipolar disorder (BD) is uncertain. This review aimed to address this, by providing a comprehensive systematic investigation of links between several cognitive domains and brain volume, cortical thickness, and cortical surface area in SSD and BD patients across early and established illness stages. An initial search of PubMed and Scopus databases resulted in 1486 articles, of which 124 met inclusion criteria and were reviewed in detail. The majority of studies focused on SSD, while those of BD were scarce. Replicated evidence for specific regions associated with indices of cognition was minimal, however for several cognitive domains, the frontal and temporal regions were broadly implicated across both recent-onset and established SSD, and to a lesser extent BD. Collectively, the findings of this review emphasize the significance of both frontal and temporal regions for some domains of cognition in SSD, while highlighting the need for future BD-related studies on this topic.
Collapse
Affiliation(s)
- James A Karantonis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Susan L Rossell
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- St Vincent’s Mental Health, St Vincent’s Hospital, Melbourne, Australia
| | - Christos Pantelis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
| | - Matthew Hughes
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Cassandra Wannan
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Vanessa Cropley
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Tamsyn E Van Rheenen
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| |
Collapse
|
4
|
Wortinger LA, Jørgensen KN, Barth C, Nerland S, Smelror RE, Vaskinn A, Ueland T, Andreassen OA, Agartz I. Significant association between intracranial volume and verbal intellectual abilities in patients with schizophrenia and a history of birth asphyxia. Psychol Med 2021; 52:1-10. [PMID: 33750510 PMCID: PMC9772907 DOI: 10.1017/s0033291721000489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The etiology of schizophrenia (SZ) is proposed to include an interplay between a genetic risk for disease development and the biological environment of pregnancy and birth, where early adversities may contribute to the poorer developmental outcome. We investigated whether a history of birth asphyxia (ASP) moderates the relationship between intracranial volume (ICV) and intelligence in SZ, bipolar disorder (BD) and healthy controls (HC). METHODS Two hundred seventy-nine adult patients (18-42 years) on the SZ and BD spectrums and 216 HC were evaluated for ASP based on information from the Medical Birth Registry of Norway. Participants underwent structural magnetic resonance imaging (MRI) to estimate ICV and intelligence quotient (IQ) assessment using the Wechsler Abbreviated Scale of Intelligence (WASI). Multiple linear regressions were used for analyses. RESULTS We found a significant three-way interaction (ICV × ASP × diagnosis) on the outcome variable, IQ, indicating that the correlation between ICV and IQ was stronger in patients with SZ who experienced ASP compared to SZ patients without ASP. This moderation by ASP was not found in BD or HC groups. In patients with SZ, the interaction between ICV and a history of the ASP was specifically related to the verbal subcomponent of IQ as measured by WASI. CONCLUSIONS The significant positive association between ICV and IQ in patients with SZ who had experienced ASP might indicate abnormal neurodevelopment. Our findings give support for ICV together with verbal intellectual abilities as clinically relevant markers that can be added to prediction tools to enhance evaluations of SZ risk.
Collapse
Affiliation(s)
- Laura Anne Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Runar Elle Smelror
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anja Vaskinn
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, NORMENT, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Sampedro A, Peña J, Ibarretxe-Bilbao N, Cabrera-Zubizarreta A, Sánchez P, Gómez-Gastiasoro A, Iriarte-Yoller N, Pavón C, Ojeda N. Brain White Matter Correlates of Creativity in Schizophrenia: A Diffusion Tensor Imaging Study. Front Neurosci 2020; 14:572. [PMID: 32655352 PMCID: PMC7324653 DOI: 10.3389/fnins.2020.00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
The relationship between creativity and psychopathology has been a controversial research topic for decades. Specifically, it has been shown that people with schizophrenia have an impairment in creative performance. However, little is known about the brain correlates underlying this impairment. Therefore, the aim of this study was to analyze whole brain white matter (WM) correlates of several creativity dimensions in people with schizophrenia. Fifty-five patients with schizophrenia underwent diffusion-weighted imaging on a 3T magnetic resonance imaging machine as well as a clinical and a creativity assessment, including verbal and figural creativity measures. Tract-based spatial statistic, implemented in FMRIB Software Library (FSL), was used to assess whole brain WM correlates with different creativity dimensions, controlling for sex, age, premorbid IQ, and medication. Mean fractional anisotropy (FA) in frontal, temporal, subcortical, brain stem, and interhemispheric regions correlated positively with figural originality. The most significant clusters included the right corticospinal tract (cerebral peduncle part) and the right body of the corpus callosum. Verbal creativity did not show any significant correlation. As a whole, these findings suggest that widespread WM integrity is involved in creative performance of patients with schizophrenia. Many of these areas have also been related to creativity in healthy people. In addition, some of these regions have shown to be particularly impaired in schizophrenia, suggesting that these WM alterations could be underlying the worse creative performance found in this pathology.
Collapse
Affiliation(s)
- Agurne Sampedro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | | | - Pedro Sánchez
- Refractory Psychosis Unit, Hospital Psiquiátrico de Álava, Vitoria-Gasteiz, Spain.,Department of Neuroscience, Psychiatry Section, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ainara Gómez-Gastiasoro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | | | - Cristóbal Pavón
- Refractory Psychosis Unit, Hospital Psiquiátrico de Álava, Vitoria-Gasteiz, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| |
Collapse
|
6
|
Diagnostic stability and long-term symptomatic and functional outcomes in first-episode antipsychotic-naïve patients with schizophrenia. Eur Psychiatry 2019; 62:130-137. [PMID: 31614250 DOI: 10.1016/j.eurpsy.2019.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE In a prospective cohort design, we investigated: i) diagnostic stability of initially antipsychotic-naïve schizophrenia patients, ii) symptom severity including symptomatic remission, and iii) functional remission including full recovery. METHODS We included 143 antipsychotic-naïve patients with first-episode schizophrenia or schizoaffective disorder. After 4-18 years, we clinically re-evaluated diagnosis, symptom severity and functioning for 70 patients. From the nationwide Danish registers, we extracted pragmatic outcome measures for 142 patients. We examined associations between baseline variables (age at diagnosis, sex, and premorbid intelligence) and long-term outcome status (symptomatic and functional remission). RESULTS At 4-18 years follow-up, 80% met the criteria for schizophrenia or schizoaffective disorder, however, despite the high diagnostic stability 53% met the criteria of symptomatic and/or functional remission. Symptomatic remission characterized 34% of the patients and was associated with female sex, better premorbid intelligence, and a younger age at schizophrenia diagnosis. Functional remission characterized 41% of the patients and 17% of patients met criteria for full recovery both of which were associated with female sex. The clinically re-evaluated patients did not differ from the drop-outs on key register-based variables. CONCLUSION We confirm the emerging evidence of a decreasing long-term diagnostic stability of schizophrenia, and a protective role of female sex. The association between premorbid intelligence and symptomatic remission underscores the pertinence of including cognitive deficits in the diagnostic category of schizophrenia. The association between younger age at diagnosis and symptomatic remission may reflect positive effects of early detection or a drift in the interpretation of the diagnostic classification system.
Collapse
|