1
|
Yan L, Li J, Yang Y, Zhang X, Zhang C. Old drug, new use: Recent advances for G-CSF. Cytokine 2024; 184:156759. [PMID: 39293182 DOI: 10.1016/j.cyto.2024.156759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3 (CSF3), is a proinflammatory cytokine that primarily stimulates the survival, proliferation, differentiation and function of neutrophil granulocyte progenitor cells and mature neutrophils. Over the past years, G-CSF has mainly been used to cure patients with neutropenia and as a part of chemotherapy to induct the remission for refractory/relapse leukemia. Recent studies showed that C-CSF can been used as condition regimens and as a part of preventive methods after allogeneic transplantation to improve the survival of patients and also has immunoregulation, and has promote or inhibit the proliferation of solid tumors. Therefore, in this review, we firstly describe the structure for G-CSF. Then its functions and mechanism were reviewed including the neutrophil mobilization, differentiation, migration, and inhibiting apoptosis of neutrophils, and its immunoregulation. Finally, the clinical applications were further discussed.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Jing Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Yang Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| |
Collapse
|
2
|
Durand M, Collombet JM, Frasca S, Sarilar V, Lataillade JJ, Le Bousse-Kerdilès MC, Holy X. Separate and combined effects of hypobaric hypoxia and hindlimb suspension on skeletal homeostasis and hematopoiesis in mice. HYPOXIA 2019; 7:41-52. [PMID: 31440522 PMCID: PMC6667353 DOI: 10.2147/hp.s195827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
Purpose Bone marrow response to an organismal stress is made by orchestrating the interplay between hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs). Neither the cellular nor the molecular factors that regulate this process are fully understood, especially since this mechanism probably varies depending on the type of stress. Herein, we explored the differentiation and fate of MSCs and HSPCs in mice challenged with a hematopoietic stress or a mechanical stress applied separately or in combination. Methods Mice were subjected to 4 days of hypobaric hypoxia (hematopoietic challenge) and/or 7 days of hindlimb suspension (stromal challenge) and then sacrificed for blood and bone collection. Using hematological measurements, colony-forming unit assays, bone histomorphometry and array-based multiplex ELISA analysis, we evaluated challenge influences on both MSC and HSPC mobilization, differentiation (osteoblasts, osteoclasts, and mature blood cells) and fate. Results We found that hypoxia leads to HSPC mobilization and that an imbalance between bone formation and bone resorption accounts for this mobilization. Whilst suspension is also associated with an imbalance between bone formation and bone resorption, it does not induce HSPC mobilization. Then, we revealed cellular interactions by combining hematopoietic and stromal challenges together in mice. We showed that the hypoxia-driven HSPC mobilization is moderated by suspension. Moreover, when applied in a hypoxic environment, suspension offsets bone imbalance. We identified stroma cell-derived factors MIP-1α, HGF and SDF-1 as potent molecular key players sustaining interactions between hindlimb suspension and hypobaric hypoxia. Conclusion Taken together, our data highlight the benefit of combining different types of stress to better understand the interplay between MSCs and HSPCs.
Collapse
Affiliation(s)
- Marjorie Durand
- Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex 91223, France
| | - Jean-Marc Collombet
- Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex 91223, France
| | - Sophie Frasca
- Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex 91223, France
| | - Véronique Sarilar
- Department of Platforms & Technological Research, French Armed Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex, 91223, France
| | - Jean-Jacques Lataillade
- Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex 91223, France.,Unit for Research Development, Armed Forces Blood Transfusion Center, Clamart, Cedex 92141, France
| | | | - Xavier Holy
- Department of Platforms & Technological Research, French Armed Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex, 91223, France
| |
Collapse
|
3
|
Abstract
Bone and marrow are the two facets of the same organ, in which bone and hematopoietic cells coexist and interact. Marrow and skeletal tissue influence each-other and a variety of genetic disorders directly targets both of them, which may result in combined hematopoietic failure and skeletal malformations. Other conditions primarily affect one organ with secondary influences on the other. For instance, various forms of congenital anemias reduce bone mass and induce osteoporosis, while osteoclast failure in osteopetrosis prevents marrow development reducing medullary cavities and causing anemia and pancytopenia. Understanding the pathophysiology of these conditions may facilitate diagnosis and management, although many disorders are presently incurable. This article describes several congenital bone diseases and their relationship to hematopoietic tissue.
Collapse
Affiliation(s)
- Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Steven L Teitelbaum
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Gómez-Guerra LS, Robles-Torres JI, Garza-Bedolla A, Mancías-Guerra C. Erectile dysfunction treated with intracavernous stem cells: A promising new therapy? Rev Int Androl 2018; 16:119-127. [PMID: 30300133 DOI: 10.1016/j.androl.2017.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/27/2017] [Accepted: 10/08/2017] [Indexed: 10/17/2022]
Abstract
In the past decades, great interest has been shown in the development of new therapies for erectile dysfunction. Stem cell therapy has generated promising results in numerous preclinical trials in animal models, which is why has led to the development of the first clinical trials in humans. The main cause involved in the pathophysiology of erectile dysfunction is vascular damage related to endothelial and neuronal injury. The interest in stem cell therapy is justified by their capability to differentiate into specific damaged tissues, including endothelium and nervous tissue, and induction of the host own cell proliferation. Despite the great effort of the many studies carried out to date, knowledge about biological effects, therapeutic efficacy and safety of stem cells therapy for erectile dysfunction is still very limited.
Collapse
Affiliation(s)
- Lauro S Gómez-Guerra
- Servicio de Urología, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Mexico.
| | - J Iván Robles-Torres
- Servicio de Urología, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Mexico
| | - Alejandra Garza-Bedolla
- Servicio de Hematología, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Mexico
| | - Consuelo Mancías-Guerra
- Servicio de Hematología, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Mexico
| |
Collapse
|
5
|
Wysoczynski M, Khan A, Bolli R. New Paradigms in Cell Therapy: Repeated Dosing, Intravenous Delivery, Immunomodulatory Actions, and New Cell Types. Circ Res 2018; 123:138-158. [PMID: 29976684 PMCID: PMC6050028 DOI: 10.1161/circresaha.118.313251] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Perhaps the most important advance in the field of cell therapy for heart disease has been the recognition that all stem/progenitor cells (both adult and embryonic) fail to engraft in the heart to a significant extent and thus work via paracrine mechanisms. This fundamental advance has led to 4 new paradigms that are discussed in this review and that may importantly shape, or even revolutionize, the future of the field: (1) repeated cell therapy, (2) intravenous cell therapy, (3) immunomodulatory actions of cell therapy, and (4) new cell types. Because virtually all of our current knowledge of cell therapy is predicated on the effects of a single cell dose, the idea that the full therapeutic effects of a cell product require repeated doses is disruptive and has far-reaching implications. For example, inadequate dosing (single-dose protocols) may be responsible, at least in part, for the borderline or disappointing results obtained to date in clinical trials; furthermore, future studies (both preclinical and clinical) may need to incorporate repeated cell administrations. Another disruptive idea, supported by emerging preclinical and clinical evidence, is that intravenously injected cells can produce beneficial effects on the heart, presumably via release of paracrine factors in extracardiac organs or endocrine factors into the systemic circulation. Intravenous administration would obviate the need for direct delivery of cells to the heart, making cell therapy simpler, cheaper, safer, more scalable, and more broadly available, even on an outpatient basis. Although the mechanism of action of cell therapy remains elusive, there is compelling in vitro evidence that transplanted cells modulate the function of various immune cell types via release of paracrine factors, such as extracellular vesicles, although in vivo evidence is still limited. Investigation of the new paradigms reviewed herein should be a top priority because it may profoundly transform cell therapy and finally make it a reality.
Collapse
Affiliation(s)
- Marcin Wysoczynski
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Abdur Khan
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Roberto Bolli
- From the Institute of Molecular Cardiology, University of Louisville, KY.
| |
Collapse
|
6
|
Garay-Mendoza D, Villarreal-Martínez L, Garza-Bedolla A, Pérez-Garza DM, Acosta-Olivo C, Vilchez-Cavazos F, Diaz-Hutchinson C, Gómez-Almaguer D, Jaime-Pérez JC, Mancías-Guerra C. The effect of intra-articular injection of autologous bone marrow stem cells on pain and knee function in patients with osteoarthritis. Int J Rheum Dis 2017; 21:140-147. [PMID: 28752679 DOI: 10.1111/1756-185x.13139] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM Management of osteoarthritis (OA) is basically symptomatic. Recently, stem cells (SC) have been used in the search for an optimum treatment. We decided to conduct a controlled clinical trial to determine if a single intra-articular injection of in vivo stimulated bone marrow SC could lead to an improvement in pain management and quality of life in patients with knee OA. METHOD This was a prospective, open-label, phase I/II clinical trial to assess the safety and efficacy of a single intra-articular injection of autologous stimulated bone marrow stem cells (BM-SC) in patients with knee OA. Individuals of both genders older than 30 years with confirmed diagnosis of OA who signed informed consent were included in two groups: SC group received in vivo BM stimulation with subcutaneous administration of granulocyte colony stimulating factor (G-CSF). SC were obtained by BM aspiration and administered in a single intra-articular injection. The control group received exclusively oral acetaminophen. Visual analogue scale and Western Ontario and McMaster Universities Osteoarthritis Index scores were performed at 1 week, 1 month and 6 months in both groups. This trial was registered in ClinialTrials.gov NCT01485198. RESULTS A total of 61 patients were included. Socio-demographic characteristics, OA grades and initial scores were similar in both groups. The BM-SC group showed significant improvement in knee pain and quality of life during the 6-month follow-up. CONCLUSION The study demonstrates feasibility and supports efficacy of a completely ambulatory procedure in treatment of knee OA.
Collapse
Affiliation(s)
- Domingo Garay-Mendoza
- Traumatology and Orthopaedics Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Laura Villarreal-Martínez
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Alejandra Garza-Bedolla
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Daniela M Pérez-Garza
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Carlos Acosta-Olivo
- Traumatology and Orthopaedics Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Felix Vilchez-Cavazos
- Traumatology and Orthopaedics Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Cesar Diaz-Hutchinson
- Traumatology and Orthopaedics Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - David Gómez-Almaguer
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - José C Jaime-Pérez
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Consuelo Mancías-Guerra
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| |
Collapse
|
7
|
Lee D, Jo JD, Kim SK, Jee BC, Kim SH. The efficacy of intrauterine instillation of granulocyte colony-stimulating factor in infertile women with a thin endometrium: A pilot study. Clin Exp Reprod Med 2016; 43:240-246. [PMID: 28090464 PMCID: PMC5234289 DOI: 10.5653/cerm.2016.43.4.240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 02/05/2023] Open
Abstract
Objective The study aimed to investigate the efficacy of intrauterine instillation of granulocyte colony-stimulating factor (G-CSF) on the day of ovulation triggering or oocyte retrieval in infertile women with a thin endometrium. Methods Fifty women whose endometrial thickness (EMT) was ≤8 mm at the time of triggering during at least one previous in vitro fertilization (IVF) cycle and an index IVF cycle were selected. On the day of triggering (n=12) or oocyte retrieval (n=38), 300 µg of G-CSF was instilled into the uterine cavity. Results In the 50 index IVF cycles, the mean EMT was 7.2±0.6 mm on the triggering day and increased to 8.5±1.5 mm on the embryo transfer day (p<0.001). The overall clinical pregnancy rate was 22.0%, the implantation rate was 15.9%, and the ongoing pregnancy rate was 20%. The clinical pregnancy rate (41.7% vs. 15.8%), the implantation rate (26.7% vs. 11.7%), and the ongoing pregnancy rate (41.7% vs. 13.2%) were higher when G-CSF was instilled on the triggering day than when it was instilled on the retrieval day, although this tendency was likewise not statistically significant. Aspects of the stimulation process and mean changes in EMT were similar in women who became pregnant and women who did not. Conclusion Intrauterine instillation of G-CSF enhanced endometrial development and resulted in an acceptable pregnancy rate. Instillation of G-CSF on the triggering day showed better outcomes. G-CSF instillation should be considered as a strategy for inducing endometrial growth and good pregnancy results in infertile women with a thin endometrium.
Collapse
Affiliation(s)
- Dayong Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | - Seul Ki Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Byung Chul Jee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Seok Hyun Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
De Felice L, Agostini F, Suriano C, Fraboni D, Gregorj C, Tirindelli MC, Picardi A, Santarone S, Di Piazza F, Di Bartolomeo P, Arcese W. Hematopoietic, Mesenchymal, and Immune Cells Are More Enhanced in Bone Marrow than in Peripheral Blood from Granulocyte Colony-Stimulating Factor Primed Healthy Donors. Biol Blood Marrow Transplant 2016; 22:1758-1764. [DOI: 10.1016/j.bbmt.2016.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
|
9
|
Blashki D, Murphy MB, Ferrari M, Simmons PJ, Tasciotti E. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow-derived counterparts. J Tissue Eng 2016; 7:2041731416661196. [PMID: 27579159 PMCID: PMC4989583 DOI: 10.1177/2041731416661196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 07/03/2016] [Indexed: 12/19/2022] Open
Abstract
In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit-fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit-fibroblasts. The composite phenotype Lin(-)/CD45(-)/CD31(-)/VLA-1(+)/Thy-1(+) enriched for clonogenic mesenchymal stem cells solely from cortical bone-derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone-derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies.
Collapse
Affiliation(s)
- Daniel Blashki
- Center for Stem Cell Research, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Matthew B Murphy
- Center for Stem Cell Research, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA
| | - Mauro Ferrari
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA
| | - Paul J Simmons
- Center for Stem Cell Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA
| |
Collapse
|
10
|
Abstract
A thin endometrium is encountered infrequently (2.4%) in assisted reproductive technology cycles. When it does occur it is a cause of concern as it is associated with lower implantation rate and pregnancy rate. Though pregnancies have been reported at 4 and 5 mm it is apparent that an endometrial thickness <6 mm is associated with a trend toward lower probability of pregnancy. Hormone replacement therapy – frozen embryo transfer (FET) cycles appear to give better results due to an improvement in endometrial receptivity (ER). The etiology of thin endometrium plays a significant part in its receptivity. A number of treatments have been tried to improve endometrial growth, but none has been validated so far. Confirming ER of a thin endometrium by an ER array test before FET offers reassurance.
Collapse
Affiliation(s)
| | - S Sharma
- Nova IVI Fertility, New Delhi, India
| |
Collapse
|
11
|
Xu B, Zhang Q, Hao J, Xu D, Li Y. Two protocols to treat thin endometrium with granulocyte colony-stimulating factor during frozen embryo transfer cycles. Reprod Biomed Online 2015; 30:349-58. [DOI: 10.1016/j.rbmo.2014.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/30/2014] [Accepted: 12/04/2014] [Indexed: 01/28/2023]
|
12
|
Pessach I, Resnick I, Shimoni A, Nagler A. G-CSF-primed BM for allogeneic SCT: revisited. Bone Marrow Transplant 2015; 50:892-8. [DOI: 10.1038/bmt.2015.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 01/08/2023]
|
13
|
Garcia NP, de Leon EB, da Costa AG, Tarragô AM, Pimentel JP, Fraporti L, de Araujo FF, Campos FMF, Teixeira-Carvalho A, Martins-Filho OA, Malheiro A. Kinetics of mesenchymal and hematopoietic stem cells mobilization by G-CSF and its impact on the cytokine microenvironment in primary cultures. Cell Immunol 2015; 293:1-9. [DOI: 10.1016/j.cellimm.2014.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/29/2014] [Accepted: 09/20/2014] [Indexed: 12/29/2022]
|
14
|
Hajifathali A, Saba F, Atashi A, Soleimani M, Mortaz E, Rasekhi M. The role of catecholamines in mesenchymal stem cell fate. Cell Tissue Res 2014; 358:651-65. [PMID: 25173883 DOI: 10.1007/s00441-014-1984-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells found in many adult tissues, especially bone marrow (BM) and are capable of differentiation into various lineage cells such as osteoblasts, adipocytes, chondrocytes and myocytes. Moreover, MSCs can be mobilized from connective tissue into circulation and from there to damaged sites to contribute to regeneration processes. MSCs commitment and differentiation are controlled by complex activities involving signal transduction through cytokines and catecholamines. There has been an increasing interest in recent years in the neural system, functioning in the support of stem cells like MSCs. Recent efforts have indicated that the catecholamine released from neural and not neural cells could be affected characteristics of MSCs. However, there have not been review studies of most aspects involved in catecholamines-mediated functions of MSCs. Thus, in this review paper, we will try to describe the current state of catecholamines in MSCs destination and discuss strategies being used for catecholamines for migration of these cells to damaged tissues. Then, the role of the nervous system in the induction of osteogenesis, adipogenesis, chondrogenesis and myogenesis from MSCs is discussed. Recent progress in studies of signaling transduction of catecholamines in determination of the final fate of MSCs is highlighted. Hence, the knowledge of interaction between MSCs with the neural system could be applied towards the development of new diagnostic and treatment alternatives for human diseases.
Collapse
Affiliation(s)
- Abbas Hajifathali
- Bone Marrow Transplantation Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
15
|
Controlled release of granulocyte colony-stimulating factor enhances osteoconductive and biodegradable properties of Beta-tricalcium phosphate in a rat calvarial defect model. Int J Biomater 2014; 2014:134521. [PMID: 24829581 PMCID: PMC4009298 DOI: 10.1155/2014/134521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
Autologous bone grafts remain the gold standard for the treatment of congenital craniofacial disorders; however, there are potential problems including donor site morbidity and limitations to the amount of bone that can be harvested. Recent studies suggest that granulocyte colony-stimulating factor (G-CSF) promotes fracture healing or osteogenesis. The purpose of the present study was to investigate whether topically applied G-CSF can stimulate the osteoconductive properties of beta-tricalcium phosphate (β-TCP) in a rat calvarial defect model. A total of 27 calvarial defects 5 mm in diameter were randomly divided into nine groups, which were treated with various combinations of a β-TCP disc and G-CSF in solution form or controlled release system using gelatin hydrogel. Histologic and histomorphometric analyses were performed at eight weeks postoperatively. The controlled release of low-dose (1 μg and 5 μg) G-CSF significantly enhanced new bone formation when combined with a β-TCP disc. Moreover, administration of 5 μg G-CSF using a controlled release system significantly promoted the biodegradable properties of β-TCP. In conclusion, the controlled release of 5 μg G-CSF significantly enhanced the osteoconductive and biodegradable properties of β-TCP. The combination of G-CSF slow-release and β-TCP is a novel and promising approach for treating pediatric craniofacial bone defects.
Collapse
|
16
|
Wang W, Li C, Pang L, Shi C, Guo F, Chen A, Cao X, Wan M. Mesenchymal stem cells recruited by active TGFβ contribute to osteogenic vascular calcification. Stem Cells Dev 2014; 23:1392-404. [PMID: 24512598 DOI: 10.1089/scd.2013.0528] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular calcification is an actively regulated process that culminates in organized extracellular matrix mineral deposition by osteoblast-like cells. The origins of the osteoblastic cells involved in this process and the underlying mechanisms remain to be defined. We previously revealed that active transforming growth factor (TGFβ) released from the injured arteries mobilizes mesenchymal stem cells (MSCs) to the blood stream and recruits the cells to the injured vessels for neointima formation. In this study, we used a low-density lipoprotein receptor (LDLR)-deficient mouse model (ldlr(-/-)), which develop progressive arterial calcification after having fed high-fat western diets (HFD), to examine whether TGFβ is involved in the mobilization of MSCs during vascular calcification. Nestin(+)/Sca1(+) cells were recruited to the diseased aorta at earlier time points, and osteocalcin(+) osteoblasts and the aortic calcification were seen at later time point in these mice. Importantly, we generated parabiotic pairs with shared blood circulation by crossing ldlr(-/-)mice fed HFD with transgenic mice, in which all the MSC-derived cells were fluorescently labeled. The labeled cells were detected not only in the peripheral blood but also in the arterial lesions in ldlr(-/-) mouse partners, and these blood circulation-originated cells gave rise to Ocn(+) osteoblastic cells at the arterial lesions. Both active TGFβ1 levels and MSCs in circulating blood were upregulated at the same time points when these cells appeared at the aortic tissue. Further, conditioned medium prepared by incubating the aortae from ldlr(-/-)mice fed HFD stimulated the migration of MSCs in the ex vivo transwell assays, and either TGFβ neutralizing antibody or the inhibitor of TGFβ Receptor I kinase (TβRI) antagonized this effect. Importantly, treatment of the mice with TβRI inhibitor blocked elevated blood MSC numbers and their recruitment to the arterial lesions. These findings suggest that TGFβ-recruited MSCs to the diseased vasculature contribute to the development of osteogenic vascular calcification.
Collapse
Affiliation(s)
- Weishan Wang
- 1 Shihezi Medical Collage, Shihezi Univeristy , Xinjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mancías-Guerra C, Marroquín-Escamilla AR, González-Llano O, Villarreal-Martínez L, Jaime-Pérez JC, García-Rodríguez F, Valdés-Burnes SL, Rodríguez-Romo LN, Barrera-Morales DC, Sánchez-Hernández JJ, Cantú-Rodríguez OG, Gutiérrez-Aguirre CH, Gómez-De León A, Elizondo-Riojas G, Salazar-Riojas R, Gómez-Almaguer D. Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial. Cytotherapy 2014; 16:810-20. [PMID: 24642016 DOI: 10.1016/j.jcyt.2014.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Cerebral palsy (CP) is related to severe perinatal hypoxia with permanent brain damage in nearly 50% of surviving preterm infants. Cell therapy is a potential therapeutic option for CP by several mechanisms, including immunomodulation through cytokine and growth factor secretion. METHODS In this phase I open-label clinical trial, 18 pediatric patients with CP were included to assess the safety of autologous bone marrow-derived total nucleated cell (TNC) intrathecal and intravenous injection after stimulation with granulocyte colony-stimulating factor. Motor, cognitive, communication, personal-social and adaptive areas were evaluated at baseline and 1 and 6 months after the procedure through the use of the Battelle Developmental Inventory. Magnetic resonance imaging was performed at baseline and 6 months after therapy. This study was registered in ClinicaTrials.gov (NCT01019733). RESULTS A median of 13.12 × 10(8) TNCs (range, 4.83-53.87) including 10.02 × 10(6) CD34+ cells (range, 1.02-29.9) in a volume of 7 mL (range, 4-10.5) was infused intrathecally. The remaining cells from the bone marrow aspirate were administered intravenously; 6.01 × 10(8) TNCs (range, 1.36-17.85), with 3.39 × 10(6) cells being CD34+. Early adverse effects included headache, vomiting, fever and stiff neck occurred in three patients. No serious complications were documented. An overall 4.7-month increase in developmental age according to the Battelle Developmental Inventory, including all areas of evaluation, was observed (±SD 2.63). No MRI changes at 6 months of follow-up were found. CONCLUSIONS Subarachnoid placement of autologous bone marrow-derived TNC in children with CP is a safe procedure. The results suggest a possible increase in neurological function.
Collapse
Affiliation(s)
- Consuelo Mancías-Guerra
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México.
| | - Alma Rosa Marroquín-Escamilla
- Neuropediatrics Department, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Oscar González-Llano
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Laura Villarreal-Martínez
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - José Carlos Jaime-Pérez
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Fernando García-Rodríguez
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Sagrario Lisete Valdés-Burnes
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Laura Nely Rodríguez-Romo
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Dinorah Catalina Barrera-Morales
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | | | - Olga Graciela Cantú-Rodríguez
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - César Homero Gutiérrez-Aguirre
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Andrés Gómez-De León
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Guillermo Elizondo-Riojas
- Radiology and Imaging Department, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Rosario Salazar-Riojas
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - David Gómez-Almaguer
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| |
Collapse
|
18
|
Tashiro K, Nonaka A, Hirata N, Yamaguchi T, Mizuguchi H, Kawabata K. Plasma elevation of vascular endothelial growth factor leads to the reduction of mouse hematopoietic and mesenchymal stem/progenitor cells in the bone marrow. Stem Cells Dev 2014; 23:2202-10. [PMID: 24344904 DOI: 10.1089/scd.2013.0469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is reported to exhibit potent hematopoietic stem/progenitor cell (HSPC) mobilization activity. However, the detailed mechanisms of HSPC mobilization by VEGF have not been examined. In this study, we investigated the effect of VEGF on bone marrow (BM) cell and the BM environment by intravenous injection of VEGF-expressing adenovirus vector (Ad-VEGF) into mice. A colony assay using peripheral blood cells revealed that plasma elevation of VEGF leads to the mobilization of HSPCs into the circulation. Granulocyte colony-stimulating factor (G-CSF) is known to mobilize HSPCs by decreasing CXC chemokine ligand 12 (CXCL12) levels in the BM. However, we found almost no changes in the CXCL12 levels in the BM after Ad-VEGF injection, suggesting that VEGF can alter the BM microenvironment by different mechanisms from G-CSF. Furthermore, flow cytometric analysis and colony forming unit-fibroblast assay showed a reduction in the number of mesenchymal progenitor cells (MPCs), which have been reported to serve as niche cells to support HSPCs, in the BM of Ad-VEGF-injected mice. Adhesion of donor cells to the recipient BM after transplantation was also impaired in mice injected with Ad-VEGF, suggesting a decrease in the niche cell number. We also observed a dose-dependent chemoattractive effect of VEGF on primary BM stromal cells in vitro. These data suggest that VEGF alters the distribution of MPCs in the BM and can also mobilize MPCs to peripheral tissues. Taken together, our results imply that VEGF-elicited egress of HSPCs would be mediated, in part, by changing the number of MPCs in the BM.
Collapse
Affiliation(s)
- Katsuhisa Tashiro
- 1 Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation , Osaka, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Ratajczak MZ, Jadczyk T, Schneider G, Kakar SS, Kucia M. Induction of a tumor-metastasis-receptive microenvironment as an unwanted and underestimated side effect of treatment by chemotherapy or radiotherapy. J Ovarian Res 2013; 6:95. [PMID: 24373588 PMCID: PMC3880975 DOI: 10.1186/1757-2215-6-95] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/26/2013] [Indexed: 12/12/2022] Open
Abstract
There are well-known side effects of chemotherapy and radiotherapy that are mainly related to the toxicity and impaired function of vital organs; however, the induction by these therapies of expression of several pro-metastatic factors in various tissues and organs that in toto create a pro-metastatic microenvironment is still, surprisingly, not widely acknowledged. In this review, we support the novel concept that toxic damage in various organs leads to upregulation in “bystander” tissues of several factors such as chemokines, growth factors, alarmines, and bioactive phosphosphingolipids, which attract circulating normal stem cells for regeneration but unfortunately also provide chemotactic signals to cancer cells that survived the initial treatment. We propose that this mechanism plays an important role in the metastasis of cancer cells to organs such as bones, lungs, and liver, which are highly susceptible to chemotherapeutic agents as well as ionizing irradiation. This problem indicates the need to develop efficient anti-metastatic drugs that will work in combination with, or follow, standard therapies in order to prevent the possibility of therapy-induced spread of tumor cells.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, 500 S, Floyd Street, Rm, 107, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
20
|
Choi S, Rajan SS, Trivedi MV. The incidence of tumor cell contamination of peripheral blood stem cells: a meta-analysis to evaluate the impact of mobilization regimens and the influence on outcomes in breast cancer patients. Acta Haematol 2013; 131:133-40. [PMID: 24192756 DOI: 10.1159/000353478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/31/2013] [Indexed: 01/12/2023]
Abstract
Tumor cell contamination (TCC) of peripheral blood stem cells (PBSCs) is a major risk in the autologous PBSC transplant setting. However, the effect of different mobilization regimens (cytokines only versus cytokines + chemotherapy) on TCC of PBSCs and its impact on treatment outcomes have not been systematically reviewed. In the present meta-analysis, we aimed to investigate this effect in breast cancer patients since multiple studies have been conducted in this setting. We systematically searched MEDLINE and Cochrane Library up to May 2012. Seventeen studies (1,819 patients) were assessed. There was no significant difference in the incidence of TCC of PBSCs between the two mobilization regimens. When the analysis was restricted to granulocyte colony-stimulating factor as a cytokine, this difference was again not significant. We also found that TCC of PBSCs was associated with a higher annual recurrence rate in these patients. This suggests that there may be a significant risk for reinfusion of tumor cell-positive PBSCs, and whether it can increase the risk of disease recurrence needs to be determined. This study also raises important questions regarding the causes of TCC of PBSCs. These issues should be investigated systematically in PBSC transplant patients.
Collapse
Affiliation(s)
- Sora Choi
- University of Houston College of Pharmacy, Houston, Tex., USA
| | | | | |
Collapse
|
21
|
Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor. Neoplasia 2013; 14:943-51. [PMID: 23097628 DOI: 10.1593/neo.121092] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 01/14/2023] Open
Abstract
Carcinoma-associated fibroblasts are key contributors of the tumor microenvironment that regulates carcinoma progression. They consist of a heterogeneous cell population with diverse origins, phenotypes, and functions. In the present report, we have explored the contribution of bone marrow (BM)-derived cells to generate different fibroblast subsets that putatively produce the matrix metalloproteinase 13 (MMP13) and affect cancer cell invasion. A murine model of skin carcinoma was applied to mice, irradiated, and engrafted with BM isolated from green fluorescent protein (GFP) transgenic mice. We provide evidence that one third of BM-derived GFP(+) cells infiltrating the tumor expressed the chondroitin sulfate proteoglycan NG2 (pericytic marker) or α-smooth muscle actin (α-SMA, myofibroblast marker), whereas almost 90% of Thy1(+) fibroblasts were originating from resident GFP-negative cells. MMP13producing cells were exclusively α-SMA(+) cells and derived from GFP(+) BM cells. To investigate their impact on tumor invasion, we isolated mesenchymal stem cells (MSCs) from the BM of wild-type and MMP13-deficient mice. Wild-type MSC promoted cancer cell invasion in a spheroid assay, whereas MSCs obtained from MMP13-deficient mice failed to. Our data support the concept of fibroblast subset specialization with BM-derived α-SMA(+) cells being the main source of MMP13, a stromal mediator of cancer cell invasion.
Collapse
|
22
|
Marmotti A, Castoldi F, Rossi R, Marenco S, Risso A, Ruella M, Tron A, Borrè A, Blonna D, Tarella C. Bone marrow-derived cell mobilization by G-CSF to enhance osseointegration of bone substitute in high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2013; 21:237-48. [PMID: 22872005 DOI: 10.1007/s00167-012-2150-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/19/2012] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate granulocyte colony-stimulating factor (G-CSF) efficacy in accelerating bone regeneration following opening-wedge high tibial valgus osteotomy for genu varum. METHODS A phase II trial was conducted for evaluating the preoperative administration of G-CSF given at 10 μg/kg/day for 3 consecutive days with an additional half-dose 4 h before the opening-wedge high tibial valgus osteotomy. Overall, 12 patients (Group A) received G-CSF treatment, and the subsequent 12 patients (Group B) underwent surgery without G-CSF. The osteotomy gap was filled by a bone graft substitute. Bone marrow cell (BMC) mobilization was monitored by CD34+ve cell and clonogenic progenitor cell analysis. All patients underwent a clinical (Lysholm Knee Scale and SF-36) and radiographic evaluation preoperatively, as well as at given intervals postsurgery. RESULTS All patients completed the treatment program without major side effects; G-CSF was well tolerated. BMC mobilization occurred in all Group A patients, with median peak values of circulating CD34+ve cells of 110/μL (range 29-256). Circulating clonogenic progenitors paralleled CD34+ve cell levels. A significant improvement in Lysholm Knee Scale was recorded at follow-up in Group A compared to Group B. At the radiographic evaluation, there was a significant increase in osseointegration at the bone-graft junction in Group A at 1, 2, 3 and 6 months postsurgery compared to Group B. The computerized tomography scan of the grafted area at 2 months postsurgery showed no significant difference in the quality of the newly formed bone between the two Groups. CONCLUSIONS Although the limited number of patients does not allow firm conclusions, the study suggests that G-CSF can be safely administered preoperatively in subjects undergoing opening-wedge high tibial valgus osteotomy; in addition, the clinical, radiographic and CT monitoring indicate that G-CSF and/or mobilized BMCs may hasten bone graft substitute osseointegration. LEVEL OF EVIDENCE I.
Collapse
Affiliation(s)
- A Marmotti
- Department of Orthopaedics and Traumatology, Ordine Mauriziano, Umberto I Hospital, University of Torino, Turin, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang C, Zhang X, Chen XH. Cellular mechanism for granulocyte-colony stimulating factor in the prevention of graft-versus-host disease in combined bone marrow and peripheral blood transplantation for hematological malignancies: the composition in collection. Transfus Apher Sci 2012; 48:3-9. [PMID: 23279971 DOI: 10.1016/j.transci.2012.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 08/16/2012] [Indexed: 01/29/2023]
Abstract
Despite improvements in transplant immunology and clinical and supportive care, acute graft-versus-host disease (aGVHD) remains a clinical challenge and a major cause of morbidity and mortality for patients after allogeneic hematopoietic stem cell transplantation (HSCT). Many ways have been used to prevent and treat aGVHD, however, long-term survival remains poor. The key to improve aGVHD outcomes may, in fact, rest upon successful initial therapy. The HLA-matched HSCT was limited by the shortage of suitable donors. Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells and G-CSF-mobilized bone marrow as a stronger aGVHD inhibition and graft-versus-leukemia effect, has been developed as an alternative transplantation strategy for patients with hematologic malignancies for the advantage of immediate donor availability, ability to select the best of many relatives, controlled graft composition and immediate access to donor-derived cellular therapies if required after transplantation. G-CSF is a potent hematopoietic cytokine, which is produced by fibroblasts, monocytes, and endothelial cells. G-CSF regulates production of neutrophils within the bone marrow and affects neutrophil progenitor proliferation, maturation and is also involved in mobilization of granulocytes, stem and progenitor cells, which has an important role in this transplantation. In this article, we review the possible mechanism for this combined G-CSF-mobilized HSCT in the prevention of aGVHD. Monocytes, T cells, Tregs cells, DC, adhesive molecule, NK cell/KIR ligand mismatching and mesenchymal stem cells may be involved in this transplantation.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, People's Republic of China
| | | | | |
Collapse
|
24
|
Rankin SM. Chemokines and adult bone marrow stem cells. Immunol Lett 2012; 145:47-54. [PMID: 22698183 DOI: 10.1016/j.imlet.2012.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/13/2012] [Indexed: 12/15/2022]
Abstract
The adult bone contains a number of distinct populations of stem cells, including haematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells and fibrocytes. While haematopoietic stem cells are required to provide a lifelong supply of blood cells it is thought that the other populations of stem cells play a role in tissue regeneration and potentially disease. The chemokine CXCL12 is produced constitutively in the bone marrow and, acting via CXCR4, is critical in maintaining HSPCs in a quiescent state and retaining all subsets of stem and progenitor cells in the bone marrow environment. The cytokine G-CSF, used clinically to mobilize haematopoietic stem cells for bone marrow transplants, activates the sympathetic nervous system and bone marrow macrophages to reduce the expression of CXCL12 by bone marrow stromal cells, thereby promoting the exit of haematopoietic stem cells from the bone marrow. Understanding the molecular mechanisms underlying G-CSF stimulated mobilization has led to development of CXCR4 antagonists as fast acting mobilizing agents for haematopoietic stem cells. Evidence now suggests that CXCR4 antagonists can similarly mobilize distinct subsets of progenitor cells, namely the endothelial progenitor cells and mesenchymal stem cells, but this requires conditioning of the bone marrow with VEGF rather than G-CSF.
Collapse
Affiliation(s)
- Sara M Rankin
- Leukocyte Biology Section, NHLI Division, Faculty of Medicine, Imperial College London, UK.
| |
Collapse
|
25
|
Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, Crowley C, McLaren C, Fierens A, Vondrys D, Cochrane L, Jephson C, Janes S, Beaumont NJ, Cogan T, Bader A, Seifalian AM, Hsuan JJ, Lowdell MW, Birchall MA. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 2012; 380:994-1000. [PMID: 22841419 PMCID: PMC4487824 DOI: 10.1016/s0140-6736(12)60737-5] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stem-cell-based, tissue engineered transplants might offer new therapeutic options for patients, including children, with failing organs. The reported replacement of an adult airway using stem cells on a biological scaffold with good results at 6 months supports this view. We describe the case of a child who received a stem-cell-based tracheal replacement and report findings after 2 years of follow-up. METHODS A 12-year-old boy was born with long-segment congenital tracheal stenosis and pulmonary sling. His airway had been maintained by metal stents, but, after failure, a cadaveric donor tracheal scaffold was decellularised. After a short course of granulocyte colony stimulating factor, bone marrow mesenchymal stem cells were retrieved preoperatively and seeded onto the scaffold, with patches of autologous epithelium. Topical human recombinant erythropoietin was applied to encourage angiogenesis, and transforming growth factor β to support chondrogenesis. Intravenous human recombinant erythropoietin was continued postoperatively. Outcomes were survival, morbidity, endoscopic appearance, cytology and proteomics of brushings, and peripheral blood counts. FINDINGS The graft revascularised within 1 week after surgery. A strong neutrophil response was noted locally for the first 8 weeks after surgery, which generated luminal DNA neutrophil extracellular traps. Cytological evidence of restoration of the epithelium was not evident until 1 year. The graft did not have biomechanical strength focally until 18 months, but the patient has not needed any medical intervention since then. 18 months after surgery, he had a normal chest CT scan and ventilation-perfusion scan and had grown 11 cm in height since the operation. At 2 years follow-up, he had a functional airway and had returned to school. INTERPRETATION Follow-up of the first paediatric, stem-cell-based, tissue-engineered transplant shows potential for this technology but also highlights the need for further research. FUNDING Great Ormond Street Hospital NHS Trust, The Royal Free Hampstead NHS Trust, University College Hospital NHS Foundation Trust, and Region of Tuscany.
Collapse
Affiliation(s)
- Martin J Elliott
- Department of Cardiothoracic Surgery, Great Ormond Street, Hospital for Children, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Cristina Lo Celso
- Imperial College London, Division of Cell and Molecular Biology, Sir Alexander Fleming building, South Kensington Campus, London SW7 2AZ, UK.
| | | |
Collapse
|
27
|
Gur-Cohen S, Lapid K, Lapidot T. Quantifying hematopoietic stem and progenitor cell mobilization. Methods Mol Biol 2012; 904:15-35. [PMID: 22890919 DOI: 10.1007/978-1-61779-943-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Allogeneic donor blood cells and autologous peripheral blood leukocytes (PBL), obtained following -clinical mobilization procedures, are routinely used as a major source of hematopoietic stem and progenitor cells (HSPC) for transplantation protocols. It is, therefore, essential to evaluate and to quantify the extent by which the HSPC are mobilized and enriched in the circulation in correlation with their long-term hematopoietic reconstitution capacity. In this chapter, we describe quantitative methods that measure the number of mobilized HSPC according to specific criteria, as well as their functional properties in vitro and in vivo. The described assays are useful for assessment of progenitor cell mobilization as applied to both human and murine HSPC.
Collapse
Affiliation(s)
- Shiri Gur-Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
28
|
Hussein O, Komarova SV. Breast cancer at bone metastatic sites: recent discoveries and treatment targets. J Cell Commun Signal 2011; 5:85-99. [PMID: 21484191 DOI: 10.1007/s12079-011-0117-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/05/2011] [Indexed: 10/25/2022] Open
Abstract
Breast carcinoma is the most common cancer of women. Bones are often involved with breast carcinoma metastases with the resulting morbidity and reduced quality of life. Breast cancer cells arriving at bone tissues mount supportive microenvironment by recruiting and modulating the activity of several host tissue cell types including the specialized bone cells osteoblasts and osteoclasts. Pathologically activated osteoclasts produce osteolytic lesions associated with bone pain, pathological fractures, cord compression and other complications of metastatic breast carcinoma at bone. Over the last decade there has been enormous growth of knowledge in the field of osteoclasts biology both in the physiological state and in the tumor microenvironment. This knowledge allowed the development and implementation of several targeted therapeutics that expanded the armamentarium of the oncologists dealing with the metastases-associated osteolytic disease. While the interactions of cancer cells with resident bone cells at the established metastatic gross lesions are well-studied, the preclinical events that underlie the progression of disseminated tumor cells into micrometastases and then into clinically-overt macrometastases are just starting to be uncovered. In this review, we discuss the established information and the most recent discoveries in the pathogenesis of osteolytic metastases of breast cancer, as well as the corresponding investigational drugs that have been introduced into clinical development.
Collapse
Affiliation(s)
- Osama Hussein
- Faculty of Dentistry, McGill University, Montreal, Quebec, H3A 1A4, Canada
| | | |
Collapse
|
29
|
Zhang C, Zhang X, Chen XH. Granulocyte-colony stimulating factor-mobilized mesenchymal stem cells: A new resource for rapid engraftment in hematopoietic stem cell transplantation. Med Hypotheses 2010; 76:241-3. [PMID: 21050671 DOI: 10.1016/j.mehy.2010.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/07/2010] [Accepted: 10/09/2010] [Indexed: 02/02/2023]
Abstract
The bone marrow (BM) microenvironment plays an important role in regulating hematopoietic stem cell self-renewal and differentiation. Mesenchymal stem cells (MSCs), which constitute approximately 0.01-0.0001% of the nucleated cells in the adult human BM, are an important component of the BM stroma that supports hematopoiesis. The BM stroma system is often damaged in patients who have undergone high-dose chemotherapy and/or radiation treatment. Thus, the BM stroma should be reconstructed during hematopoietic stem cell transplantation (HSCT). Granulocyte-colony stimulating factor (G-CSF) is a potent hematopoietic cytokine that regulates neutrophil generation within the BM by modulating the mobility, proliferation and maturation of neutrophil progenitor cells. The results from our study here show that G-CSF markedly increased the number of donor-derived MSCs in the BM and the peripheral blood. Engraftment was faster in HSCTs with bone marrow that was treated with G-CSF (G-BM) or with G-BM- and G-CSF-treated peripheral blood stem cells compared to stead-state bone marrow (SS-BM). Based on these findings, we hypothesize that G-CSF-mobilized treatment of MSCs may accelerate engraftment in HSCT.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, People's Republic of China
| | | | | |
Collapse
|
30
|
Lévesque JP, Helwani FM, Winkler IG. The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 2010; 24:1979-92. [PMID: 20861913 DOI: 10.1038/leu.2010.214] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The concept of hematopoietic stem cell (HSC) niche was formulated in 1978, but HSC niches remained unidentified for the following two decades largely owing to technical limitations. Sophisticated live microscopy techniques and genetic manipulations have identified the endosteal region of the bone marrow (BM) as a preferential site of residence for the most potent HSC - able to reconstitute in serial transplants - with osteoblasts and their progenitors as critical cellular elements of these endosteal niches. This article reviews the path to the discovery of these endosteal niches (often called 'osteoblastic' niches) for HSC, what cell types contribute to these niches with their known physical and biochemical features. In the past decade, a first wave of research uncovered many mechanisms responsible for HSC homing to, and mobilization from, the whole BM tissue. However, the recent discovery of endosteal HSC niches has initiated a second wave of research focusing on the mechanisms by which most primitive HSC lodge into and migrate out of their endosteal niches. The second part of this article reviews the current knowledge of the mechanisms of HSC lodgment into, retention in and mobilization from osteoblastic niches.
Collapse
Affiliation(s)
- J-P Lévesque
- Biotherapies Program, Haematopoietic Stem Cell Laboratory, Mater Medical Research Institute, South Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
31
|
Lapidot T, Kollet O. The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2010; 2010:1-6. [PMID: 21239763 DOI: 10.1182/asheducation-2010.1.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Navigation of transplanted stem cells to their target organs is essential for clinical bone marrow reconstitution. Recent studies have established that hematopoietic stem cells (HSCs) dynamically change their features and location, shifting from quiescent and stationary cells anchored in the bone marrow to cycling and motile cells entering the circulation. These changes are driven by stress signals. Bidirectional migrations to and from the bone marrow are active processes that form the basis for HSC transplantation protocols. However, how and why HSCs enter and exit the bone marrow as part of host defense and repair is not fully understood. The development of functional, preclinical, immune-deficient NOD/SCID (non-obese diabetic-severe combined immunodeficiency) mice transplantation models has enabled the characterization of normal and leukemic human HSCs and investigation of their biology. Intensive research has revealed multiple tasks for the chemokine SDF-1 (stromal cell-derived factor-1, also known as CXCL12) in HSC interactions with the microenvironment, as well as the existence of overlapping mechanisms controlling stress-induced mobilization and enhanced HSC homing, sequential events of major physiological relevance. These processes entail dynamically interacting, multi-system aspects that link the bone marrow vasculature and stromal cells with the nervous and immune systems. Neural cues act as an external pacemaker to synchronize HSC migration and development to balance bone remodeling via circadian rhythms in order to address blood and immune cell production for the physiological needs of the body. Stress situations and clinical HSC mobilization accelerate leukocyte proliferation and bone turnover. This review presents the concept that HSC regulation by the brain-bone-blood triad via stress signals controls the bone marrow reservoir of immature and maturing leukocytes.
Collapse
Affiliation(s)
- Tsvee Lapidot
- Immunology Department, Weizmann Institute, Rehovot, Israel
| | | |
Collapse
|