1
|
Seah I, Goh D, Banerjee A, Su X. Modeling inherited retinal diseases using human induced pluripotent stem cell derived photoreceptor cells and retinal pigment epithelial cells. Front Med (Lausanne) 2024; 11:1328474. [PMID: 39011458 PMCID: PMC11246861 DOI: 10.3389/fmed.2024.1328474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Since the discovery of induced pluripotent stem cell (iPSC) technology, there have been many attempts to create cellular models of inherited retinal diseases (IRDs) for investigation of pathogenic processes to facilitate target discovery and validation activities. Consistency remains key in determining the utility of these findings. Despite the importance of consistency, quality control metrics are still not widely used. In this review, a toolkit for harnessing iPSC technology to generate photoreceptor, retinal pigment epithelial cell, and organoid disease models is provided. Considerations while developing iPSC-derived IRD models such as iPSC origin, reprogramming methods, quality control metrics, control strategies, and differentiation protocols are discussed. Various iPSC IRD models are dissected and the scientific hurdles of iPSC-based disease modeling are discussed to provide an overview of current methods and future directions in this field.
Collapse
Affiliation(s)
- Ivan Seah
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Debbie Goh
- Department of Ophthalmology, National University Hospital (NUH), Singapore, Singapore
| | - Animesh Banerjee
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinyi Su
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, National University Hospital (NUH), Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| |
Collapse
|
2
|
Raeker MÖ, Perera ND, Karoukis AJ, Chen L, Feathers KL, Ali RR, Thompson DA, Fahim AT. Reduced Retinal Pigment Epithelial Autophagy Due to Loss of Rab12 Prenylation in a Human iPSC-RPE Model of Choroideremia. Cells 2024; 13:1068. [PMID: 38920696 PMCID: PMC11201631 DOI: 10.3390/cells13121068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in CHM, encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of CHM, the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown. A CRISPR/Cas-9-edited CHM-/- iPSC-RPE model was generated with isogenic control cells. Unprenylated Rabs were biotinylated in vitro and identified by tandem mass tag (TMT) spectrometry. Rab12 was one of the least prenylated and has an established role in suppressing mTORC1 signaling and promoting autophagy. CHM-/- iPSC-RPE cells demonstrated increased mTORC1 signaling and reduced autophagic flux, consistent with Rab12 dysfunction. Autophagic flux was rescued in CHM-/- cells by transduction with gene replacement (ShH10-CMV-CHM) and was reduced in control cells by siRNA knockdown of Rab12. This study supports Rab12 under-prenylation as an important cause of RPE cell dysfunction in choroideremia and highlights increased mTORC1 and reduced autophagy as potential disease pathways for further investigation.
Collapse
Affiliation(s)
- Maide Ö. Raeker
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Nirosha D. Perera
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Athanasios J. Karoukis
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Lisheng Chen
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kecia L. Feathers
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Robin R. Ali
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
- KCL Center for Cell and Gene Therapy, London WC2R 2LS, UK
| | - Debra A. Thompson
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abigail T. Fahim
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| |
Collapse
|
3
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
4
|
KIMURA K, NAGAKURA H, TSUKAMOTO M, YOSHIDA T, SUGISAKI H, SHISHIDA K, TACHI Y, SHIMASAKI S, SUGIURA K, HATOYA S. Canine induced pluripotent stem cells can be successfully maintained in weekend-free culture systems. J Vet Med Sci 2024; 86:247-257. [PMID: 38171744 PMCID: PMC10963097 DOI: 10.1292/jvms.23-0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Canine induced pluripotent stem cells (ciPSCs) can provide useful insights into novel therapies in both veterinary and medical fields. However, limited accessibility to the present culture medium and requirement of considerable time, effort, and cost for routine ciPSC maintenance restrict advancement in ciPSC research. In addition, it is unknown whether ciPSC culture conditions influence differentiation propensity. We investigated the availability of the common human pluripotent stem cells (hPSCs) culture systems for ciPSC maintenance and the differentiation propensities of the ciPSCs maintained in these culture systems. StemFlex and mTeSR Plus supported PSC-like colony formation and pluripotency markers expression in ciPSCs even after five passages. Additionally, ciPSCs were maintained under weekend-free culture conditions with a stable growth rate, pluripotency marker expression, and differentiation abilities using vitronectin (VTN-N) and Geltrex. Following maintenance of spontaneously differentiated ciPSCs under various conditions by embryoid body formation, there were few differences in the differentiation propensities of ciPSCs among the tested culture conditions. Thus, ciPSCs were successfully cultured under weekend-free conditions for ciPSC maintenance using StemFlex or mTeSR Plus with VTN-N or Geltrex. The present study offers simpler and more effort-, time-, and cost-saving options for ciPSC culture systems, which may lead to further development in research using ciPSCs.
Collapse
Affiliation(s)
- Kazuto KIMURA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Hiroya NAGAKURA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Masaya TSUKAMOTO
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Takumi YOSHIDA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Hiroko SUGISAKI
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Kohei SHISHIDA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Yuta TACHI
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Shoko SHIMASAKI
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Kikuya SUGIURA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Shingo HATOYA
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
5
|
Dujardin C, Habeler W, Monville C, Letourneur D, Simon-Yarza T. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Bioact Mater 2024; 31:151-177. [PMID: 37637086 PMCID: PMC10448242 DOI: 10.1016/j.bioactmat.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
The outer blood-retina barrier (oBRB), crucial for the survival and the proper functioning of the overlying retinal layers, is disrupted in numerous diseases affecting the retina, leading to the loss of the photoreceptors and ultimately of vision. To study the oBRB and/or its degeneration, many in vitro oBRB models have been developed, notably to investigate potential therapeutic strategies against retinal diseases. Indeed, to this day, most of these pathologies are untreatable, especially once the first signs of degeneration are observed. To cure those patients, a current strategy is to cultivate in vitro a mature oBRB epithelium on a custom membrane that is further implanted to replace the damaged native tissue. After a description of the oBRB and the related diseases, this review presents an overview of the oBRB models, from the simplest to the most complex. Then, we propose a discussion over the used cell types, for their relevance to study or treat the oBRB. Models designed for in vitro applications are then examined, by paying particular attention to the design evolution in the last years, the development of pathological models and the benefits of co-culture models, including both the retinal pigment epithelium and the choroid. Lastly, this review focuses on the models developed for in vivo implantation, with special emphasis on the choice of the material, its processing and its characterization, before discussing the reported pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Walter Habeler
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
- CECS, Centre D’étude des Cellules Souches, 91100, Corbeil-Essonnes, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| |
Collapse
|
6
|
Sarkar H, Lahne M, Nair N, Moosajee M. Oxidative and Endoplasmic Reticulum Stress Represent Novel Therapeutic Targets for Choroideremia. Antioxidants (Basel) 2023; 12:1694. [PMID: 37759997 PMCID: PMC10525549 DOI: 10.3390/antiox12091694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy, affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, with no approved therapy. CHM is caused by mutations in the CHM gene, which encodes the ubiquitously expressed Rab escort protein 1 (REP1). REP1 is involved in prenylation, a post-translational modification of Rab proteins, and plays an essential role in intracellular trafficking. In this study, we examined oxidative and endoplasmic reticulum (ER) stress pathways in chmru848 zebrafish and CHMY42X patient fibroblasts, and screened a number of neuroprotectants for their ability to reduce stress. The expression of the oxidative stress markers txn, cat and sod3a, and the ER stress markers bip, atf4 and atf6, were dysregulated in chmru848 fish. The expression of SOD2 was also reduced in CHMY42X fibroblasts, along with reduced BIP and increased CHOP expression. The lack of REP1 is associated with defects in vesicular trafficking, photoreceptor outer segment phagocytosis and melanosome transport, leading to increased levels of stress within the retina and RPE. Drugs targeting oxidative and ER stress pathways represent novel therapeutic avenues.
Collapse
Affiliation(s)
- Hajrah Sarkar
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Francis Crick Institute, London NW1 1AT, UK
| | | | - Neelima Nair
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
7
|
Zhang KR, Jankowski CSR, Marshall R, Nair R, Más Gómez N, Alnemri A, Liu Y, Erler E, Ferrante J, Song Y, Bell BA, Baumann BH, Sterling J, Anderson B, Foshe S, Roof J, Fazelinia H, Spruce LA, Chuang JZ, Sung CH, Dhingra A, Boesze-Battaglia K, Chavali VRM, Rabinowitz JD, Mitchell CH, Dunaief JL. Oxidative stress induces lysosomal membrane permeabilization and ceramide accumulation in retinal pigment epithelial cells. Dis Model Mech 2023; 16:dmm050066. [PMID: 37401371 PMCID: PMC10399446 DOI: 10.1242/dmm.050066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.
Collapse
Affiliation(s)
- Kevin R. Zhang
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor S. R. Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rayna Marshall
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohini Nair
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Néstor Más Gómez
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingrui Liu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Erler
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Ferrante
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brent A. Bell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bailey H. Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon Anderson
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Foshe
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Roof
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Lynn A. Spruce
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venkata R. M. Chavali
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Claire H. Mitchell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Yusuf IH, MacLaren RE. Choroideremia: Toward Regulatory Approval of Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041279. [PMID: 37277205 PMCID: PMC10691480 DOI: 10.1101/cshperspect.a041279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Choroideremia is an X-linked inherited retinal degeneration characterized by primary centripetal degeneration of the retinal pigment epithelium (RPE), with secondary degeneration of the choroid and retina. Affected individuals experience reduced night vision in early adulthood with blindness in late middle age. The underlying CHM gene encodes REP1, a protein involved in the prenylation of Rab GTPases essential for intracellular vesicle trafficking. Adeno-associated viral gene therapy has demonstrated some benefit in clinical trials for choroideremia. However, challenges remain in gaining regulatory approval. Choroideremia is slowly progressive, which presents difficulties in demonstrating benefit over short pivotal clinical trials that usually run for 1-2 years. Improvements in visual acuity are particularly challenging due to the initial negative effects of surgical detachment of the fovea. Despite these challenges, great progress toward a treatment has been made since choroideremia was first described in 1872.
Collapse
Affiliation(s)
- Imran H Yusuf
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
9
|
Liu Q, Liu J, Higuchi A. hPSC-derived RPE transplantation for the treatment of macular degeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:227-269. [PMID: 37678973 DOI: 10.1016/bs.pmbts.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Macular degeneration (MD) is a group of diseases characterized by irreversible and progressive vision loss. Patients with MD suffer from severely impaired central vision, especially elderly people. Currently, only one type of MD, wet age-related macular degeneration (AMD), can be treated with anti-vascular endothelium growth factor (VEGF) drugs. Other types of MD remain difficult to treat. With the advent of human pluripotent stem cells (hPSCs) and their differentiation into retinal pigmented epithelium (RPE), it is promising to treat patients with MD by transplantation of hPSC-derived RPE into the subretinal space. In this review, the current progress in hPSC-derived RPE transplantation for the treatment of patients with MD is described from bench to bedside, including hPSC differentiation into RPE and the characterization and usage of hPSC-derived RPE for transplantation into patients with MD.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Ma JY, Greferath U, Wong JH, Fothergill LJ, Jobling AI, Vessey KA, Fletcher EL. Aging induces cell loss and a decline in phagosome processing in the mouse retinal pigment epithelium. Neurobiol Aging 2023; 128:1-16. [PMID: 37130462 DOI: 10.1016/j.neurobiolaging.2023.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss and dysfunction in the retinal pigment epithelium (RPE) with age is known to contribute to disease development. The aim of this study was to investigate how the C57BL/6J mouse RPE changes with age. RPE structure was found to change with age and eccentricity, with cell size increasing, nuclei lost, and tight junctions altered in the peripheral retina. Phagocytosis of photoreceptor outer segments (POS) by the RPE was investigated using gene expression analysis and histology. RNA-Seq transcriptomic gene profiling of the RPE showed a downregulation of genes involved in phagosome processing and histological analysis showed a decline in phagosome-lysosome association in the aged tissue. In addition, failures in the autophagy pathway that modulates intracellular waste degradation were observed in the aged RPE tissue. These findings highlight that RPE cell loss and slowing of POS processing contribute to RPE dysfunction with age and may predispose the aging eye to AMD development.
Collapse
|
11
|
Iwagawa T, Masumoto H, Tabuchi H, Tani K, Conklin BR, Watanabe S. Evaluation of CRISPR/Cas9 exon-skipping vector for choroideremia using human induced pluripotent stem cell-derived RPE. J Gene Med 2023; 25:e3464. [PMID: 36413603 PMCID: PMC9898118 DOI: 10.1002/jgm.3464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/21/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Exon-skipping is a powerful genetic tool, especially when delivering genes using an AAV-mediated full-length gene supplementation strategy is difficult owing to large length of genes. Here, we used engineered human induced pluripotent stem cells and artificial intelligence to evaluate clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9-based exon-skipping vectors targeting genes of the retinal pigment epithelium (RPE). The model system was choroideremia; this is an X-linked inherited retinal disease caused by mutation of the CHM gene. METHODS We explored whether artificial intelligence detected differentiation of human OTX2, PAX6 and MITF (hOPM) cells, in which OTX2, PAX6 and MITF expression was induced by doxycycline treatment, into RPE. Plasmid encoding CHM exon-skipping modules targeting the splice donor sites of exons 6 were constructed. A clonal hOPM cell line with a frameshift mutation in exon 6 was generated and differentiated into RPE. CHM exon 6-skipping was induced, and the effects of skipping on phagocytic activity, cell death and prenylation of Rab small GTPase (RAB) were evaluated using flow cytometry, an in vitro prenylation assay and western blotting. RESULTS Artificial intelligence-based evaluation of RPE differentiation was successful. Retinal pigment epithelium cells with a frameshift mutation in exon 6 showed increased cell death, reduced phagocytic activity and increased cytosolic unprenylated RABs only when oxidative stress was in play. The latter two phenotypes were partially rescued by exon 6-skipping of CHM. CONCLUSIONS CHM exon 6-skipping contributed to RPE phagocytosis probably by increasing RAB38 prenylation under oxidative stress.
Collapse
Affiliation(s)
- Toshiro Iwagawa
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Retinal Biology and Pathology, University of Tokyo Hospital, University of Tokyo, Tokyo, Japan
| | - Hiroki Masumoto
- Xeno Hoc, inc
- Department of Ophthalmology, Tsukazaki Hospital, Hyogo, Japan
| | - Hitoshi Tabuchi
- Department of Ophthalmology, Tsukazaki Hospital, Hyogo, Japan
- Department of Technology and Design Thinking for Medicine, Hiroshima University, Hiroshima, Japan
| | - Kenzaburo Tani
- Laboratory of ALA Advanced Medical Research, Institute for quantitative Biosciences, University of Tokyo, Tokyo, Japan
| | - Bruce R. Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Departments of Medicine, Ophthalmology & Cellular and Molecular Pharmacology University of California, San Francisco, CA, United States, USA
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Retinal Biology and Pathology, University of Tokyo Hospital, University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Transplanted human induced pluripotent stem cells- derived retinal ganglion cells embed within mouse retinas and are electrophysiologically functional. iScience 2022; 25:105308. [DOI: 10.1016/j.isci.2022.105308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
|
13
|
Han X, Wu S, Sun Z, Zhu T, Wei X, Zou X, Sui R. Generation of a human induced pluripotent stem cell line PUMCHi017-A from a Choroideremia patient with CHM mutation. Stem Cell Res 2022; 59:102661. [PMID: 35032821 DOI: 10.1016/j.scr.2022.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/27/2022] Open
Abstract
Choroideremia (CHM) is a rare monogenic, X-linked recessive inherited chorioretinal dystrophy caused by loss of function variants in the CHM gene. We successfully generated a novel human induced pluripotent stem cell (hiPSC) line from a CHM patient with CHM variant using the Sendai-virus based approach. These cells will provide a disease model for further studies on the disease pathogenesis and potential interventions.
Collapse
Affiliation(s)
- Xiaoxu Han
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shijing Wu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Zhu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xing Wei
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Zou
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Testing Mitochondrial-Targeted Drugs in iPSC-RPE from Patients with Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2022; 15:ph15010062. [PMID: 35056119 PMCID: PMC8781759 DOI: 10.3390/ph15010062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. No universally effective treatments exist for atrophic or “dry” AMD, which results from loss of the retinal pigment epithelium (RPE) and photoreceptors and accounts for ≈80% of all AMD patients. Prior studies provide evidence for the involvement of mitochondrial dysfunction in AMD pathology. This study used induced pluripotent stem cell (iPSC) RPE derived from five AMD patients to test the efficacy of three drugs (AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide), Metformin, trehalose) that target key processes in maintaining optimal mitochondrial function. The patient iPSC-RPE lines were used in a proof-of-concept drug screen, utilizing an analysis of RPE mitochondrial function following acute and extended drug exposure. Results show considerable variability in drug response across patient cell lines, supporting the need for a personalized medicine approach for treating AMD. Furthermore, our results demonstrate the feasibility of using iPSC-RPE from AMD patients to develop a personalized drug treatment regime and provide a roadmap for the future clinical management of AMD.
Collapse
|
15
|
Kalatzis V, Roux AF, Meunier I. Molecular Therapy for Choroideremia: Pre-clinical and Clinical Progress to Date. Mol Diagn Ther 2021; 25:661-675. [PMID: 34661884 DOI: 10.1007/s40291-021-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/01/2022]
Abstract
Choroideremia is an inherited retinal disease characterised by a degeneration of the light-sensing photoreceptors, supporting retinal pigment epithelium and underlying choroid. Patients present with the same symptoms as those with classic rod-cone dystrophy: (1) night blindness early in life; (2) progressive peripheral visual field loss, and (3) central vision decline with a slow progression to legal blindness. Choroideremia is monogenic and caused by mutations in CHM. Eight clinical trials (three phase 1/2, four phase 2, and one phase 3) have started (four of which are already finished) to evaluate the therapeutic efficacy of gene supplementation mediated by subretinal delivery of an adeno-associated virus serotype 2 (AAV2/2) vector expressing CHM. Furthermore, one phase 1 clinical trial has been initiated to evaluate the efficiency of a novel AAV variant to deliver CHM to the outer retina following intravitreal delivery. Lastly, a non-viral-mediated CHM replacement strategy is currently under development, which could lead to a future clinical trial. Here, we summarise the rationale behind these various studies, as well as any results published to date. The diversity of these trials currently places choroideremia at the forefront of the retinal gene therapy field. As a consequence, the trial outcomes, regardless of the results, have the potential to change the landscape of gene supplementation for inherited retinal diseases.
Collapse
Affiliation(s)
- Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.
| | - Anne-Françoise Roux
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
16
|
Kim JY, Nam Y, Rim YA, Ju JH. Review of the Current Trends in Clinical Trials Involving Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2021; 18:142-154. [PMID: 34532844 PMCID: PMC8445612 DOI: 10.1007/s12015-021-10262-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/25/2023]
Abstract
In 2006, the induced pluripotent stem cell (iPSC) was presented to the world, paving the way for the development of a magnitude of novel therapeutic alternatives, addressing a diverse range of diseases. However, despite the immense cell therapy potential, relatively few clinical trials evaluating iPSC-technology have actually translated into interventional, clinically applied treatment regimens. Herein, our aim was to determine trends in globally conducted clinical trials involving iPSCs. Data were derived both from well-known registries recording clinical trials from across the globe, and databases from individual countries. Comparisons were firstly drawn between observational and interventional studies before the latter was further analyzed in terms of therapeutic and nontherapeutic trials. Our main observations included global distribution, purpose, target size, and types of disorder relevant to evaluated trials. In terms of nontherapeutic trials, the USA conducted the majority, a large average number of participants-187-was included in the trials, and studies on circulatory system disorders comprised a slightly higher proportion of total studies. Conversely, Japan was the frontrunner in terms of conducting therapeutic trials, and the average number of participants was much lower, at roughly 29. Disorders of the circulatory, as well as nervous and visual systems, were all studied in equal measure. This review highlights the impact that iPSC-based cell therapies can have, should development thereof gain more traction. We lastly considered a few companies that are actively utilizing iPSCs in the development of therapies for various diseases, for whom the global trends in clinical trials could become increasingly important.
Collapse
Affiliation(s)
- Jennifer Yejean Kim
- Department of Biology, Georgetown University, Washington, DC, USA
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoojun Nam
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Division of Rheumatology, Department of Internal Medicine, St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
17
|
Zeitz C, Nassisi M, Laurent-Coriat C, Andrieu C, Boyard F, Condroyer C, Démontant V, Antonio A, Lancelot ME, Frederiksen H, Kloeckener-Gruissem B, El-Shamieh S, Zanlonghi X, Meunier I, Roux AF, Mohand-Saïd S, Sahel JA, Audo I. CHM mutation spectrum and disease: An update at the time of human therapeutic trials. Hum Mutat 2021; 42:323-341. [PMID: 33538369 DOI: 10.1002/humu.24174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Choroideremia is an X-linked inherited retinal disorder (IRD) characterized by the degeneration of retinal pigment epithelium, photoreceptors, choriocapillaris and choroid affecting males with variable phenotypes in female carriers. Unlike other IRD, characterized by a large clinical and genetic heterogeneity, choroideremia shows a specific phenotype with causative mutations in only one gene, CHM. Ongoing gene replacement trials raise further interests in this disorder. We describe here the clinical and genetic data from a French cohort of 45 families, 25 of which carry novel variants, in the context of 822 previously reported choroideremia families. Most of the variants represent loss-of-function mutations with eleven families having large (i.e. ≥6 kb) genomic deletions, 18 small insertions, deletions or insertion deletions, six showing nonsense variants, eight splice site variants and two missense variants likely to affect splicing. Similarly, 822 previously published families carry mostly loss-of-function variants. Recurrent variants are observed worldwide, some of which linked to a common ancestor, others arisen independently in specific CHM regions prone to mutations. Since all exons of CHM may harbor variants, Sanger sequencing combined with quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification experiments are efficient to achieve the molecular diagnosis in patients with typical choroideremia features.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Camille Andrieu
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - Fiona Boyard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vanessa Démontant
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Barbara Kloeckener-Gruissem
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Said El-Shamieh
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Xavier Zanlonghi
- Clinique Pluridisciplinaire Jules Verne, Institut Ophtalmologique de l'Ouest, Nantes, France
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Académie des Sciences-Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Department of Genetics, UCL-Institute of Ophthalmology, London, UK
| |
Collapse
|
18
|
Abbouda A, Avogaro F, Moosajee M, Vingolo EM. Update on Gene Therapy Clinical Trials for Choroideremia and Potential Experimental Therapies. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:64. [PMID: 33445564 PMCID: PMC7826687 DOI: 10.3390/medicina57010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/26/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Background and objectives: Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations involving the CHM gene. Gene therapy has entered late-phase clinical trials, although there have been variable results. This review gives a summary on the outcomes of phase I/II CHM gene therapy trials and describes other potential experimental therapies. Materials and Methods: A Medline (National Library of Medicine, Bethesda, MD, USA) search was performed to identify all articles describing gene therapy treatments available for CHM. Results: Five phase I/II clinical trials that reported subretinal injection of adeno-associated virus Rab escort protein 1 (AAV2.REP1) vector in CHM patients were included. The Oxford study (NCT01461213) included 14 patients; a median gain of 5.5 ± 6.8 SD (-6 min, 18 max) early treatment diabetic retinopathy study (ETDRS) letters was reported. The Tubingen study (NCT02671539) included six patients; only one patient had an improvement of 17 ETDRS letters. The Alberta study (NCT02077361) enrolled six patients, and it reported a minimal vision change, except for one patient who gained 15 ETDRS letters. Six patients were enrolled in the Miami trial (NCT02553135), which reported a median gain of 2 ± 4 SD (-1 min, 10 max) ETDRS letters. The Philadelphia study (NCT02341807) included 10 patients; best corrected visual acuity (BCVA) returned to baseline in all by one-year follow-up, but one patient had -17 ETDRS letters from baseline. Overall, 40 patients were enrolled in trials, and 34 had 2 years of follow-up, with a median gain of 1.5 ± 7.2 SD (-14 min, 18 max) in ETDRS letters. Conclusions: The primary endpoint, BCVA following gene therapy in CHM, showed a marginal improvement with variability between trials. Optimizing surgical technique and pre-, peri-, and post-operative management with immunosuppressants to minimize any adverse ocular inflammatory events could lead to reduced incidence of complications. The ideal therapeutic window needs to be addressed to ensure that the necessary cell types are adequately transduced, minimizing viral toxicity, to prolong long-term transgenic potential. Long-term efficacy will be addressed by ongoing studies.
Collapse
Affiliation(s)
| | - Filippo Avogaro
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Enzo Maria Vingolo
- Fiorini Hospital Terracina AUSL, 04019 Terracina, Latina, Italy;
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| |
Collapse
|
19
|
Carlson-Stevermer J, Das A, Abdeen AA, Fiflis D, Grindel BI, Saxena S, Akcan T, Alam T, Kletzien H, Kohlenberg L, Goedland M, Dombroe MJ, Saha K. Design of efficacious somatic cell genome editing strategies for recessive and polygenic diseases. Nat Commun 2020; 11:6277. [PMID: 33293555 PMCID: PMC7722885 DOI: 10.1038/s41467-020-20065-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Compound heterozygous recessive or polygenic diseases could be addressed through gene correction of multiple alleles. However, targeting of multiple alleles using genome editors could lead to mixed genotypes and adverse events that amplify during tissue morphogenesis. Here we demonstrate that Cas9-ribonucleoprotein-based genome editors can correct two distinct mutant alleles within a single human cell precisely. Gene-corrected cells in an induced pluripotent stem cell model of Pompe disease expressed the corrected transcript from both corrected alleles, leading to enzymatic cross-correction of diseased cells. Using a quantitative in silico model for the in vivo delivery of genome editors into the developing human infant liver, we identify progenitor targeting, delivery efficiencies, and suppression of imprecise editing outcomes at the on-target site as key design parameters that control the efficacy of various therapeutic strategies. This work establishes that precise gene editing to correct multiple distinct gene variants could be highly efficacious if designed appropriately.
Collapse
Affiliation(s)
- Jared Carlson-Stevermer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Amritava Das
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Amr A Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - David Fiflis
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin I Grindel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Shivani Saxena
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tugce Akcan
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Tausif Alam
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi Kletzien
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Lucille Kohlenberg
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Madelyn Goedland
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Micah J Dombroe
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Retina Research Foundation Kathryn and Latimer Murfee Chair, Madison, WI, USA.
| |
Collapse
|
20
|
Shao X, Guha S, Lu W, Campagno KE, Beckel JM, Mills JA, Yang W, Mitchell CH. Polarized Cytokine Release Triggered by P2X7 Receptor from Retinal Pigmented Epithelial Cells Dependent on Calcium Influx. Cells 2020; 9:cells9122537. [PMID: 33255431 PMCID: PMC7760537 DOI: 10.3390/cells9122537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Cytokine release from non-inflammatory cells is a key step in innate immunity, and agonists triggering cytokine release are central in coordinating responses. P2X7 receptor (P2X7R) stimulation by extracellular ATP is best known to active the NLRP3 inflammasome and release IL-1β, but stimulation also leads to release of other cytokines. As cytokine signaling by retinal pigmented epithelial (RPE) cells is implicated in retinal neurodegeneration, the role of P2X7R in release of cytokine IL-6 from RPE cells was investigated. P2X7R stimulation triggered IL-6 release from primary mouse RPE, human iPS-RPE and human ARPE-19 cells. IL-6 release was polarized, with predominant rise across apical membranes. IL-6 release was inhibited by P2X7R antagonists A438079, A839977, and AZ10606120, but not the NRTI lamivudine (3TC), P2X1R antagonist NF279, or P2Y1R antagonist MRS2179. P2X7R-mediated IL-6 release required extracellular Ca2+ and was blocked by Ca2+ chelator BAPTA. IL-6 release and Ca2+ elevation occurred rapidly, consistent with vesicular IL-6 staining in unstimulated cells. P2X7R stimulation did not trigger IL-1β release in these unprimed cells. P2X7R-mediated IL-6 release was enhanced in RPE cells from the ABCA4−/− mouse model of retinal degeneration. In summary, P2X7R stimulation triggers rapid Ca2+-dependent IL-6 release across the apical membrane of RPE cells.
Collapse
Affiliation(s)
- Xiaolei Shao
- Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518060, China;
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.G.); (J.M.B.)
| | - Sonia Guha
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.G.); (J.M.B.)
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Wennan Lu
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (K.E.C.)
| | - Keith E. Campagno
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (K.E.C.)
| | - Jonathan M. Beckel
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.G.); (J.M.B.)
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jason A. Mills
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Kirby Center for Molecular Ophthalmology and Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenli Yang
- Department of Medicine and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Claire H. Mitchell
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.G.); (J.M.B.)
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (K.E.C.)
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-215-573-2176
| |
Collapse
|
21
|
Dual SMAD inhibition and Wnt inhibition enable efficient and reproducible differentiations of induced pluripotent stem cells into retinal ganglion cells. Sci Rep 2020; 10:11828. [PMID: 32678240 PMCID: PMC7366935 DOI: 10.1038/s41598-020-68811-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a group of progressive optic neuropathies that share common biological and clinical characteristics including irreversible changes to the optic nerve and visual field loss caused by the death of retinal ganglion cells (RGCs). The loss of RGCs manifests as characteristic cupping or optic nerve degeneration, resulting in visual field loss in patients with Glaucoma. Published studies on in vitro RGC differentiation from stem cells utilized classical RGC signaling pathways mimicking retinal development in vivo. Although many strategies allowed for the generation of RGCs, increased variability between experiments and lower yield hampered the cross comparison between individual lines and between experiments. To address this critical need, we developed a reproducible chemically defined in vitro methodology for generating retinal progenitor cell (RPC) populations from iPSCs, that are efficiently directed towards RGC lineage. Using this method, we reproducibly differentiated iPSCs into RGCs with greater than 80% purity, without any genetic modifications. We used small molecules and peptide modulators to inhibit BMP, TGF-β (SMAD), and canonical Wnt pathways that reduced variability between iPSC lines and yielded functional and mature iPSC-RGCs. Using CD90.2 antibody and Magnetic Activated Cell Sorter (MACS) technique, we successfully purified Thy-1 positive RGCs with nearly 95% purity.
Collapse
|
22
|
Buck TM, Wijnholds J. Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. Int J Mol Sci 2020; 21:E4197. [PMID: 32545533 PMCID: PMC7352801 DOI: 10.3390/ijms21124197] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal dystrophies and optic neuropathies cause chronic disabling loss of visual function. The development of recombinant adeno-associated viral vectors (rAAV) gene therapies in all disease fields have been promising, but the translation to the clinic has been slow. The safety and efficacy profiles of rAAV are linked to the dose of applied vectors. DNA changes in the rAAV gene cassette affect potency, the expression pattern (cell-specificity), and the production yield. Here, we present a library of rAAV vectors and elements that provide a workflow to design novel vectors. We first performed a meta-analysis on recombinant rAAV elements in clinical trials (2007-2020) for ocular gene therapies. We analyzed 33 unique rAAV gene cassettes used in 57 ocular clinical trials. The rAAV gene therapy vectors used six unique capsid variants, 16 different promoters, and six unique polyadenylation sequences. Further, we compiled a list of promoters, enhancers, and other sequences used in current rAAV gene cassettes in preclinical studies. Then, we give an update on pro-viral plasmid backbones used to produce the gene therapy vectors, inverted terminal repeats, production yield, and rAAV safety considerations. Finally, we assess rAAV transgene and bioactivity assays applied to cells or organoids in vitro, explants ex vivo, and clinical studies.
Collapse
Affiliation(s)
- Thilo M. Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
23
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Brambati M, Borrelli E, Sacconi R, Bandello F, Querques G. Choroideremia: Update On Clinical Features And Emerging Treatments. Clin Ophthalmol 2019; 13:2225-2231. [PMID: 31819346 PMCID: PMC6874149 DOI: 10.2147/opth.s195564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Choroideremia (CHM) is an X-linked chorioretinal dystrophy characterized by progressive degeneration of the choroid, retinal pigment epithelium and retina. This disease is caused by mutations in the X-linked CHM gene encoding a Ras-related GTPase Rab escort protein (REP)-1, which is extremely important for the retinal function. Clinically, male-affected patients have a progressive reduction in visual acuity. This disease is formally considered incurable, although new promising treatments have been recently introduced. In this article, a review of the salient pathogenetic features of choroideremia, essential for the proper interpretation of therapeutic approaches, is followed by a discussion of the fundamental clinical features of this hereditary disease. Finally, relevant new therapeutic approaches in this disease will be discussed, including gene therapy, stem cells, small molecules, and retinal prosthesis.
Collapse
Affiliation(s)
- Maria Brambati
- Ophthalmology Department, San Raffaele University Hospital, Milan, Italy
| | - Enrico Borrelli
- Ophthalmology Department, San Raffaele University Hospital, Milan, Italy
| | - Riccardo Sacconi
- Ophthalmology Department, San Raffaele University Hospital, Milan, Italy
| | - Francesco Bandello
- Ophthalmology Department, San Raffaele University Hospital, Milan, Italy
| | - Giuseppe Querques
- Ophthalmology Department, San Raffaele University Hospital, Milan, Italy
| |
Collapse
|
25
|
Foote KG, Rinella N, Tang J, Bensaid N, Zhou H, Zhang Q, Wang RK, Porco TC, Roorda A, Duncan JL. Cone Structure Persists Beyond Margins of Short-Wavelength Autofluorescence in Choroideremia. Invest Ophthalmol Vis Sci 2019; 60:4931-4942. [PMID: 31770433 PMCID: PMC6879190 DOI: 10.1167/iovs.19-27979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose We studied the relationship between structure and function of the choriocapillaris (CC), retinal pigment epithelium (RPE), and photoreceptors in patients with choroideremia (CHM). Methods Six CHM patients (12 eyes) and four normal subjects (six eyes) were studied with fundus-guided microperimetry, confocal and nonconfocal adaptive optics scanning laser ophthalmoscopy (AOSLO), near-infrared and color fundus photos, short wavelength fundus autofluorescence (SW-AF), and swept-source optical coherence tomography (SS-OCT) and angiography (SS-OCTA) images. Cone spacing was represented using Z-scores (standard deviations from the mean at that eccentricity). CC flow voids were defined using a threshold of 1 SD below the normal mean. Results Cone spacing Z-scores were not significantly correlated with distance from the borders of preserved RPE, determined using either the SS-OCT or SW-AF scans. Cone spacing Z-scores were significantly correlated with CC flow voids and retinal sensitivity. Flow voids were abnormal in regions of preserved RPE and increased progressively from within -2° of the preserved area to +2° beyond the border. Visual sensitivity decreased as CC flow voids increased approaching and beyond the border of preserved structure. Conclusions In CHM, cone spacing Z-scores correlated with CC flow voids, and were negatively correlated with retinal sensitivity, suggesting cone degeneration accompanied reduced CC perfusion. Functional cones were found outside the presumed borders of preserved outer-retina/RPE as defined by SW-AF, but not outside the borders determined by SS-OCT. The use of SW-AF to identify the border of preserved structures may underestimate regions with cells that may be amenable to treatment.
Collapse
Affiliation(s)
- Katharina G. Foote
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, California, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Nicholas Rinella
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Janette Tang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | | | - Hao Zhou
- Department of Bioengineering, University of Washington, Seattle, Seattle, Washington, United States
| | - Qinqin Zhang
- Department of Bioengineering, University of Washington, Seattle, Seattle, Washington, United States
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Seattle, Washington, United States
| | - Travis C. Porco
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Francis I. Proctor Foundation, Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Austin Roorda
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, California, United States
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| |
Collapse
|
26
|
Erkilic N, Gatinois V, Torriano S, Bouret P, Sanjurjo-Soriano C, Luca VD, Damodar K, Cereso N, Puechberty J, Sanchez-Alcudia R, Hamel CP, Ayuso C, Meunier I, Pellestor F, Kalatzis V. A Novel Chromosomal Translocation Identified due to Complex Genetic Instability in iPSC Generated for Choroideremia. Cells 2019; 8:cells8091068. [PMID: 31514470 PMCID: PMC6770680 DOI: 10.3390/cells8091068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have revolutionized the study of human diseases as they can renew indefinitely, undergo multi-lineage differentiation, and generate disease-specific models. However, the difficulty of working with iPSCs is that they are prone to genetic instability. Furthermore, genetically unstable iPSCs are often discarded, as they can have unforeseen consequences on pathophysiological or therapeutic read-outs. We generated iPSCs from two brothers of a previously unstudied family affected with the inherited retinal dystrophy choroideremia. We detected complex rearrangements involving chromosomes 12, 20 and/or 5 in the generated iPSCs. Suspecting an underlying chromosomal aberration, we performed karyotype analysis of the original fibroblasts, and of blood cells from additional family members. We identified a novel chromosomal translocation t(12;20)(q24.3;q11.2) segregating in this family. We determined that the translocation was balanced and did not impact subsequent retinal differentiation. We show for the first time that an undetected genetic instability in somatic cells can breed further instability upon reprogramming. Therefore, the detection of chromosomal aberrations in iPSCs should not be disregarded, as they may reveal rearrangements segregating in families. Furthermore, as such rearrangements are often associated with reproductive failure or birth defects, this in turn has important consequences for genetic counseling of family members.
Collapse
Affiliation(s)
- Nejla Erkilic
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Vincent Gatinois
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Simona Torriano
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Pauline Bouret
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Carla Sanjurjo-Soriano
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Valerie De Luca
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Krishna Damodar
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Nicolas Cereso
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Jacques Puechberty
- Service of Clinical Genetics, Department of Medical Genetics, Rare Diseases and Personalized Medicine, CHU, Montpellier, France
| | - Rocio Sanchez-Alcudia
- Department of Genetics, Institute for Sanitary Investigation, Foundation Jimenez Diaz, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Christian P Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, CHU, 34295 Montpellier, France
| | - Carmen Ayuso
- Department of Genetics, Institute for Sanitary Investigation, Foundation Jimenez Diaz, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Isabelle Meunier
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, CHU, 34295 Montpellier, France
| | - Franck Pellestor
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Vasiliki Kalatzis
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France.
- University of Montpellier, 34090 Montpellier, France.
| |
Collapse
|
27
|
McDougald DS, Duong TT, Palozola KC, Marsh A, Papp TE, Mills JA, Zhou S, Bennett J. CRISPR Activation Enhances In Vitro Potency of AAV Vectors Driven by Tissue-Specific Promoters. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:380-389. [PMID: 31024980 PMCID: PMC6477656 DOI: 10.1016/j.omtm.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/21/2019] [Indexed: 12/28/2022]
Abstract
Validation of gene transfer vectors containing tissue-specific promoters in cell-based functional assays poses a formidable challenge for gene therapy product development. Here, we describe a novel approach based on CRISPR/dCas9 transcriptional activation to achieve robust transgene expression from transgene cassettes containing tissue or cell type-specific promoters after infection with AAV vectors in cell-based systems. Guide RNA sequences targeting two promoters that are highly active within mammalian photoreceptors were screened in a novel promoter activation assay. Using this screen, we generated and characterized stable cell lines that co-express dCas9.VPR and top-performing guide RNA candidates. These cells exhibit potent activation of proviral plasmids after transfection or after infection with AAV vectors delivering transgene cassettes carrying photoreceptor-specific promoters. In addition, we interrogated mechanisms to optimize this platform through the addition of multiple guide RNA sequences and co-expression of the universal adeno-associated virus receptor (AAVR). Collectively, this investigation identifies a rapid and broadly applicable strategy to enhance in vitro expression and to evaluate potency of AAV vectors that rely upon cell or tissue-specific regulatory elements.
Collapse
Affiliation(s)
- Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thu T Duong
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine C Palozola
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anson Marsh
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler E Papp
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Mills
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shangzhen Zhou
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Comparative AAV-eGFP Transgene Expression Using Vector Serotypes 1-9, 7m8, and 8b in Human Pluripotent Stem Cells, RPEs, and Human and Rat Cortical Neurons. Stem Cells Int 2019; 2019:7281912. [PMID: 30800164 PMCID: PMC6360060 DOI: 10.1155/2019/7281912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/30/2018] [Accepted: 11/16/2018] [Indexed: 01/03/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV), produced from a nonpathogenic parvovirus, has become an increasing popular vector for gene therapy applications in human clinical trials. However, transduction and transgene expression of rAAVs can differ across in vitro and ex vivo cellular transduction strategies. This study compared 11 rAAV serotypes, carrying one reporter transgene cassette containing a cytomegalovirus immediate-early enhancer (eCMV) and chicken beta actin (CBA) promoter driving the expression of an enhanced green-fluorescent protein (eGFP) gene, which was transduced into four different cell types: human iPSC, iPSC-derived RPE, iPSC-derived cortical, and dissociated embryonic day 18 rat cortical neurons. Each cell type was exposed to three multiplicity of infections (MOI: 1E4, 1E5, and 1E6 vg/cell). After 24, 48, 72, and 96 h posttransduction, GFP-expressing cells were examined and compared across dosage, time, and cell type. Retinal pigmented epithelium showed highest AAV-eGFP expression and iPSC cortical the lowest. At an MOI of 1E6 vg/cell, all serotypes show measurable levels of AAV-eGFP expression; moreover, AAV7m8 and AAV6 perform best across MOI and cell type. We conclude that serotype tropism is not only capsid dependent but also cell type plays a significant role in transgene expression dynamics.
Collapse
|
29
|
A Mini Review: Moving iPSC-Derived Retinal Subtypes Forward for Clinical Applications for Retinal Degenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:557-561. [PMID: 31884670 DOI: 10.1007/978-3-030-27378-1_91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Patient-derived human-induced pluripotent stem cells (iPSCs) have been critical in advancing our understanding of the underlying mechanisms of numerous retinal disorders. Many of these retinal disorders have no effective treatment and result in severe visual impairment and even blindness. Among the retinal degenerative diseases modeled by iPSCs are age-related macular degeneration (AMD), glaucoma, Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and autosomal dominant retinitis pigmentosa (adRP). In addition to studying retinal disease ontogenesis and pathology, hiPSCs have clinical and pharmacological applications, such as developing drug screening and gene therapy approaches and new cell-based clinical treatments. Recent studies have primarily focused on three retinal cell fates - retinal pigmented epithelium cells (RPE), retinal ganglion cells (RGCs), and photoreceptor cells - and have demonstrated that hiPSCs have great potential for increasing our knowledge of and developing treatments for retinal degenerative disorders.
Collapse
|
30
|
Cehajic Kapetanovic J, Patrício MI, MacLaren RE. Progress in the development of novel therapies for choroideremia. EXPERT REVIEW OF OPHTHALMOLOGY 2019; 14:277-285. [PMID: 32002021 PMCID: PMC6992425 DOI: 10.1080/17469899.2019.1699406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION There are no currently approved treatments for choroideremia, an X-linked progressive inherited retinal degeneration that leads to blindness by middle age. Several treatment options are being explored, but with major advances in adeno-associated vector (AAV) gene replacement therapy that has reached phase III clinical trials. AREAS COVERED In this review we discuss new insights into the clinical phenotyping and genetic testing of choroideremia patients, that aid disease characterisation, progression and patient inclusion into clinical trials. Recent advances in in-vitro studies have resulted in the development of functional assays that can be used to confirm the diagnosis in challenging cases and to quantify vector potency for use in clinical trials. We review the progress in current gene therapy trials and some considerations towards gene therapy approval for the treatment of choroideremia. Lastly, we discuss developments in alternative therapies including optogenetics. EXPERT COMMENTARY AAV gene replacement therapy is the most promising treatment strategy for choroideremia, that has developed exponentially over the last few years with a phase III clinical trial now underway. Optogenetics is a promising alternative strategy that might be applicable in late stages of degeneration.
Collapse
Affiliation(s)
- Jasmina Cehajic Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maria I Patrício
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
31
|
Mitsios A, Dubis AM, Moosajee M. Choroideremia: from genetic and clinical phenotyping to gene therapy and future treatments. Ther Adv Ophthalmol 2018; 10:2515841418817490. [PMID: 30627697 PMCID: PMC6311551 DOI: 10.1177/2515841418817490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 11/15/2022] Open
Abstract
Choroideremia is an X-linked inherited chorioretinal dystrophy leading to blindness by late adulthood. Choroideremia is caused by mutations in the CHM gene which encodes Rab escort protein 1 (REP1), an ubiquitously expressed protein involved in intracellular trafficking and prenylation activity. The exact site of pathogenesis remains unclear but results in degeneration of the photoreceptors, retinal pigment epithelium and choroid. Animal and stem cell models have been used to study the molecular defects in choroideremia and test effectiveness of treatment interventions. Natural history studies of choroideremia have provided additional insight into the clinical phenotype of the condition and prepared the way for clinical trials aiming to investigate the safety and efficacy of suitable therapies. In this review, we provide a summary of the current knowledge on the genetics, pathophysiology, clinical features and therapeutic strategies that might become available for choroideremia in the future, including gene therapy, stem cell treatment and small-molecule drugs with nonsense suppression action.
Collapse
Affiliation(s)
- Andreas Mitsios
- Institute of Ophthalmology, University College London, London, UK
| | - Adam M Dubis
- Institute of Ophthalmology, University College London, London, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
32
|
Foltz LP, Clegg DO. Patient-derived induced pluripotent stem cells for modelling genetic retinal dystrophies. Prog Retin Eye Res 2018; 68:54-66. [PMID: 30217765 DOI: 10.1016/j.preteyeres.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022]
Abstract
The human retina is a highly complex tissue that makes up an integral part of our central nervous system. It is astonishing that our retina works seamlessly to provide one of our most critical senses, and it is equally devastating when a disease destroys a portion of the retina and robs people of their vision. After decades of research, scientists are beginning to understand retinal cells in a way that can benefit the millions of individuals suffering from inherited blindness. This understanding has come about in part with the ability to culture human embryonic stem cells and the innovation of induced pluripotent stem cells, which can be cultured from patients and used to model their disease. In this review, we highlight the successes of specific disease modelling studies and resulting molecular discoveries. The greatest strides in cellular modelling have come from mutations in genes with established and well-understood cellular functions in the context of the retina. We believe that the future of cellular modelling depends on emphasising reproducible production of retinal cell types, demonstrating functional rescue using site-specific programmable nucleases, and shifting towards unbiased screening using next generation sequencing.
Collapse
Affiliation(s)
- Leah P Foltz
- Biochemistry and Molecular Biology, University of California, Santa Barbara, CA, USA; Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA, USA.
| | - Dennis O Clegg
- Biochemistry and Molecular Biology, University of California, Santa Barbara, CA, USA; Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA, USA
| |
Collapse
|
33
|
Duncan JL, Pierce EA, Laster AM, Daiger SP, Birch DG, Ash JD, Iannaccone A, Flannery JG, Sahel JA, Zack DJ, Zarbin MA. Inherited Retinal Degenerations: Current Landscape and Knowledge Gaps. Transl Vis Sci Technol 2018; 7:6. [PMID: 30034950 PMCID: PMC6052953 DOI: 10.1167/tvst.7.4.6] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Amy M Laster
- Foundation Fighting Blindness, Columbia, MD, USA
| | - Stephen P Daiger
- Human Genetics Center, School of Public Health, and Ruiz Department of Ophthalmology and Visual Science, The University of Texas Health Science Center, Houston, TX, USA
| | - David G Birch
- Rose-Silverthorne Retinal Degenerations Laboratory, Retina Foundation of the Southwest, Dallas, TX, USA
| | - John D Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Alessandro Iannaccone
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - John G Flannery
- Vision Science, the Helen Wills Neuroscience Institute, the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - José A Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Institut de la Vision-Sorbonne Université, Inserm, CNRS-Paris, France
| | - Donald J Zack
- Departments of Ophthalmology, Neuroscience, Molecular Biology and Genetics, and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marco A Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | | |
Collapse
|
34
|
Xue K, MacLaren RE. Ocular gene therapy for choroideremia: clinical trials and future perspectives. EXPERT REVIEW OF OPHTHALMOLOGY 2018; 13:129-138. [PMID: 31105764 DOI: 10.1080/17469899.2018.1475232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Introduction Gene therapy offers the potential for targeted replacement of single gene defects in inherited retinal degenerations. Areas covered Choroideremia is an X-linked blinding retinal disease resulting from deficiency of the CHM gene product, REP1. The disease represents an ideal target for retinal gene therapy, as it is readily diagnosed in the clinic, relatively homogenous in phenotype and slow progressing, thereby providing a wide therapeutic window for intervention. Ongoing clinical trials of retinal gene therapy for choroideremia using an adeno-associated viral vector have demonstrated safety and early efficacy. We review the clinical characteristics of the disease with a view to interpreting the findings of gene therapy clinical trials and discuss future directions. Expert commentary Choroideremia gene therapy has so far demonstrated good safety profile and early functional visual acuity gains in a proportion of trial participants, which appear to be sustained.
Collapse
Affiliation(s)
- Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford & Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford & Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|