1
|
Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet 2024; 15:1389558. [PMID: 38699229 PMCID: PMC11063328 DOI: 10.3389/fgene.2024.1389558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as "Yamanaka factors," can reprogram or stimulate the production of induced pluripotent stem cells (iPSCs). Although OSKM is still the gold standard, there are multiple ways to reprogram cells into iPSCs. In recent years, significant progress has been made in improving the efficiency of this technology. Ten years after the first report was published, human pluripotent stem cells have gradually been applied in clinical settings, including disease modeling, cell therapy, new drug development, and cell derivation. Here, we provide a review of the discovery of iPSCs and their applications in disease and development.
Collapse
Affiliation(s)
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Sanjurjo-Soriano C, Jimenez-Medina C, Erkilic N, Cappellino L, Lefevre A, Nagel-Wolfrum K, Wolfrum U, Van Wijk E, Roux AF, Meunier I, Kalatzis V. USH2A variants causing retinitis pigmentosa or Usher syndrome provoke differential retinal phenotypes in disease-specific organoids. HGG ADVANCES 2023; 4:100229. [PMID: 37654703 PMCID: PMC10465966 DOI: 10.1016/j.xhgg.2023.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
There is an emblematic clinical and genetic heterogeneity associated with inherited retinal diseases (IRDs). The most common form is retinitis pigmentosa (RP), a rod-cone dystrophy caused by pathogenic variants in over 80 different genes. Further complexifying diagnosis, different variants in individual RP genes can also alter the clinical phenotype. USH2A is the most prevalent gene for autosomal-recessive RP and one of the most challenging because of its large size and, hence, large number of variants. Moreover, USH2A variants give rise to non-syndromic and syndromic RP, known as Usher syndrome (USH) type 2, which is associated with vision and hearing loss. The lack of a clear genotype-phenotype correlation or prognostic models renders diagnosis highly challenging. We report here a long-awaited differential non-syndromic RP and USH phenotype in three human disease-specific models: fibroblasts, induced pluripotent stem cells (iPSCs), and mature iPSC-derived retinal organoids. Moreover, we identified distinct retinal phenotypes in organoids from multiple RP and USH individuals, which were validated by isogenic-corrected controls. Non-syndromic RP organoids showed compromised photoreceptor differentiation, whereas USH organoids showed a striking and unexpected cone phenotype. Furthermore, complementary clinical investigations identified macular atrophy in a high proportion of USH compared with RP individuals, further validating our observations that USH2A variants differentially affect cones. Overall, identification of distinct non-syndromic RP and USH phenotypes in multiple models provides valuable and robust readouts for testing the pathogenicity of USH2A variants as well as the efficacy of therapeutic approaches in complementary cell types.
Collapse
Affiliation(s)
- Carla Sanjurjo-Soriano
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Carla Jimenez-Medina
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Luisina Cappellino
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Arnaud Lefevre
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Erwin Van Wijk
- Department of Otorhinolaryngology, Hearing, & Genes, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Anne-Françoise Roux
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
- Molecular Genetics Laboratory, University of Montpellier, CHU, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
3
|
Sanjurjo-Soriano C, Erkilic N, Damodar K, Boukhaddaoui H, Diakatou M, Garita-Hernandez M, Mamaeva D, Dubois G, Jazouli Z, Jimenez-Medina C, Goureau O, Meunier I, Kalatzis V. Retinoic acid delays initial photoreceptor differentiation and results in a highly structured mature retinal organoid. Stem Cell Res Ther 2022; 13:478. [PMID: 36114559 PMCID: PMC9482314 DOI: 10.1186/s13287-022-03146-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Human-induced pluripotent stem cell-derived retinal organoids are a valuable tool for disease modelling and therapeutic development. Many efforts have been made over the last decade to optimise protocols for the generation of organoids that correctly mimic the human retina. Most protocols use common media supplements; however, protocol-dependent variability impacts data interpretation. To date, the lack of a systematic comparison of a given protocol with or without supplements makes it difficult to determine how they influence the differentiation process and morphology of the retinal organoids. METHODS A 2D-3D differentiation method was used to generate retinal organoids, which were cultured with or without the most commonly used media supplements, notably retinoic acid. Gene expression was assayed using qPCR analysis, protein expression using immunofluorescence studies, ultrastructure using electron microscopy and 3D morphology using confocal and biphoton microscopy of whole organoids. RESULTS Retinoic acid delayed the initial stages of differentiation by modulating photoreceptor gene expression. At later stages, the presence of retinoic acid led to the generation of mature retinal organoids with a well-structured stratified photoreceptor layer containing a predominant rod population. By contrast, the absence of retinoic acid led to cone-rich organoids with a less organised and non-stratified photoreceptor layer. CONCLUSIONS This study proves the importance of supplemented media for culturing retinal organoids. More importantly, we demonstrate for the first time that the role of retinoic acid goes beyond inducing a rod cell fate to enhancing the organisation of the photoreceptor layer of the mature organoid.
Collapse
Affiliation(s)
- Carla Sanjurjo-Soriano
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France.
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, Univ Montpellier, CHU, Montpellier, France
| | - Krishna Damodar
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Hassan Boukhaddaoui
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Michalitsa Diakatou
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Marcela Garita-Hernandez
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Daria Mamaeva
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Gregor Dubois
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Zhour Jazouli
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Carla Jimenez-Medina
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
| | - Olivier Goureau
- Institut de La Vision, Sorbonne Université, Inserm, CNRS, Paris, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, Univ Montpellier, CHU, Montpellier, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, Inserm, Montpellier, France.
| |
Collapse
|
4
|
Zaw K, Carvalho LS, Aung-Htut MT, Fletcher S, Wilton SD, Chen FK, McLenachan S. Pathogenesis and Treatment of Usher Syndrome Type IIA. Asia Pac J Ophthalmol (Phila) 2022; 11:369-379. [PMID: 36041150 DOI: 10.1097/apo.0000000000000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Usher syndrome (USH) is the most common form of deaf-blindness, with an estimated prevalence of 4.4 to 16.6 per 100,000 people worldwide. The most common form of USH is type IIA (USH2A), which is caused by homozygous or compound heterozygous mutations in the USH2A gene and accounts for around half of all USH cases. USH2A patients show moderate to severe hearing loss from birth, with diagnosis of retinitis pigmentosa in the second decade of life and variable vestibular involvement. Although hearing aids or cochlear implants can provide some mitigation of hearing deficits, there are currently no treatments aimed at preventing or restoring vision loss in USH2A patients. In this review, we first provide an overview of the molecular biology of the USH2A gene and its protein isoforms, which include a transmembrane protein (TM usherin) and an extracellular protein (EC usherin). The role of these proteins in the inner ear and retina and their impact on the pathogenesis of USH2A is discussed. We review animal cell-derived and patient cell-derived models currently used in USH2A research and conclude with an overview of potential treatment strategies currently in preclinical development and clinical trials.
Collapse
Affiliation(s)
- Khine Zaw
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Livia S Carvalho
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
5
|
Stem cell transplantation as a progressing treatment for retinitis pigmentosa. Cell Tissue Res 2022; 387:177-205. [PMID: 35001210 DOI: 10.1007/s00441-021-03551-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/27/2021] [Indexed: 11/02/2022]
Abstract
Retinal degenerative diseases such as retinitis pigmentosa (RP) are of the major causes of vision loss in developed countries. Despite the unclear pathophysiology, treatment methods have been investigated vastly in the past decades. This review article mainly discusses the advances in application of stem cell and progenitor transplantation for retinitis pigmentosa. Stem cell sources such as mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, neural stem cells, retinal progenitor cells, and olfactory ensheathing cells are discussed separately in addition to a brief description of two approaches for treatment of early-stage RP, including gene therapy and nutritional therapy.
Collapse
|
6
|
Generation and Genetic Correction of USH2A c.2299delG Mutation in Patient-Derived Induced Pluripotent Stem Cells. Genes (Basel) 2021; 12:genes12060805. [PMID: 34070435 PMCID: PMC8227183 DOI: 10.3390/genes12060805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 01/15/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of inherited combined hearing and vision loss. As an autosomal recessive trait, it affects 15,000 people in the United States alone and is responsible for ~21% of inherited blindness and 3 to 6% of early childhood deafness. Approximately 2/3 of the patients with Usher syndrome suffer from USH2, of whom 85% have mutations in the USH2A gene. Patients affected by USH2 suffer from congenital bilateral progressive sensorineural hearing loss and retinitis pigmentosa which leads to progressive loss of vision. To study the molecular mechanisms of this disease and develop a gene therapy strategy, we generated human induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) obtained from a patient carrying compound heterozygous variants of USH2A c.2299delG and c.1256G>T and the patient’s healthy sibling. The pluripotency and stability were confirmed by pluripotency cell specific marker expression and molecular karyotyping. Subsequent CRISPR/Cas9 genome editing using a homology repair template was used to successfully correct the USH2A c.2299delG mutation back to normal c.2299G in the generated patient iPSCs to create an isogenic pair of lines. Importantly, this manuscript describes the first use of the recombinant Cas9 and synthetic gRNA ribonucleoprotein complex approach to correct the USH2A c.2299delG without additional genetic effects in patient-derived iPSCs, an approach that is amenable for therapeutic genome editing. This work lays a solid foundation for future ex vivo and in vivo gene therapy investigations and these patient’s iPSCs also provide an unlimited resource for disease modeling and mechanistic studies.
Collapse
|
7
|
Sanjurjo-Soriano C, Erkilic N, Baux D, Mamaeva D, Hamel CP, Meunier I, Roux AF, Kalatzis V. Genome Editing in Patient iPSCs Corrects the Most Prevalent USH2A Mutations and Reveals Intriguing Mutant mRNA Expression Profiles. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:156-173. [PMID: 31909088 PMCID: PMC6938853 DOI: 10.1016/j.omtm.2019.11.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Inherited retinal dystrophies (IRDs) are characterized by progressive photoreceptor degeneration and vision loss. Usher syndrome (USH) is a syndromic IRD characterized by retinitis pigmentosa (RP) and hearing loss. USH is clinically and genetically heterogeneous, and the most prevalent causative gene is USH2A. USH2A mutations also account for a large number of isolated autosomal recessive RP (arRP) cases. This high prevalence is due to two recurrent USH2A mutations, c.2276G>T and c.2299delG. Due to the large size of the USH2A cDNA, gene augmentation therapy is inaccessible. However, CRISPR/Cas9-mediated genome editing is a viable alternative. We used enhanced specificity Cas9 of Streptococcus pyogenes (eSpCas9) to successfully achieve seamless correction of the two most prevalent USH2A mutations in induced pluripotent stem cells (iPSCs) of patients with USH or arRP. Our results highlight features that promote high target efficacy and specificity of eSpCas9. Consistently, we did not identify any off-target mutagenesis in the corrected iPSCs, which also retained pluripotency and genetic stability. Furthermore, analysis of USH2A expression unexpectedly identified aberrant mRNA levels associated with the c.2276G>T and c.2299delG mutations that were reverted following correction. Taken together, our efficient CRISPR/Cas9-mediated strategy for USH2A mutation correction brings hope for a potential treatment for USH and arRP patients.
Collapse
Affiliation(s)
- Carla Sanjurjo-Soriano
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier, France.,University of Montpellier, 34095 Montpellier, France
| | - Nejla Erkilic
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier, France.,University of Montpellier, 34095 Montpellier, France
| | - David Baux
- University of Montpellier, 34095 Montpellier, France.,Medical Genetics Laboratory, CHU, 34093 Montpellier, France
| | - Daria Mamaeva
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier, France.,University of Montpellier, 34095 Montpellier, France
| | - Christian P Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier, France.,University of Montpellier, 34095 Montpellier, France.,National Reference Centre for Inherited Sensory Disorders, CHU, 34295 Montpellier, France
| | - Isabelle Meunier
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier, France.,University of Montpellier, 34095 Montpellier, France.,National Reference Centre for Inherited Sensory Disorders, CHU, 34295 Montpellier, France
| | - Anne-Françoise Roux
- University of Montpellier, 34095 Montpellier, France.,Medical Genetics Laboratory, CHU, 34093 Montpellier, France
| | - Vasiliki Kalatzis
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier, France.,University of Montpellier, 34095 Montpellier, France
| |
Collapse
|
8
|
Erkilic N, Gatinois V, Torriano S, Bouret P, Sanjurjo-Soriano C, Luca VD, Damodar K, Cereso N, Puechberty J, Sanchez-Alcudia R, Hamel CP, Ayuso C, Meunier I, Pellestor F, Kalatzis V. A Novel Chromosomal Translocation Identified due to Complex Genetic Instability in iPSC Generated for Choroideremia. Cells 2019; 8:cells8091068. [PMID: 31514470 PMCID: PMC6770680 DOI: 10.3390/cells8091068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have revolutionized the study of human diseases as they can renew indefinitely, undergo multi-lineage differentiation, and generate disease-specific models. However, the difficulty of working with iPSCs is that they are prone to genetic instability. Furthermore, genetically unstable iPSCs are often discarded, as they can have unforeseen consequences on pathophysiological or therapeutic read-outs. We generated iPSCs from two brothers of a previously unstudied family affected with the inherited retinal dystrophy choroideremia. We detected complex rearrangements involving chromosomes 12, 20 and/or 5 in the generated iPSCs. Suspecting an underlying chromosomal aberration, we performed karyotype analysis of the original fibroblasts, and of blood cells from additional family members. We identified a novel chromosomal translocation t(12;20)(q24.3;q11.2) segregating in this family. We determined that the translocation was balanced and did not impact subsequent retinal differentiation. We show for the first time that an undetected genetic instability in somatic cells can breed further instability upon reprogramming. Therefore, the detection of chromosomal aberrations in iPSCs should not be disregarded, as they may reveal rearrangements segregating in families. Furthermore, as such rearrangements are often associated with reproductive failure or birth defects, this in turn has important consequences for genetic counseling of family members.
Collapse
Affiliation(s)
- Nejla Erkilic
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Vincent Gatinois
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Simona Torriano
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Pauline Bouret
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Carla Sanjurjo-Soriano
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Valerie De Luca
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Krishna Damodar
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Nicolas Cereso
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Jacques Puechberty
- Service of Clinical Genetics, Department of Medical Genetics, Rare Diseases and Personalized Medicine, CHU, Montpellier, France
| | - Rocio Sanchez-Alcudia
- Department of Genetics, Institute for Sanitary Investigation, Foundation Jimenez Diaz, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Christian P Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, CHU, 34295 Montpellier, France
| | - Carmen Ayuso
- Department of Genetics, Institute for Sanitary Investigation, Foundation Jimenez Diaz, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Isabelle Meunier
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, CHU, 34295 Montpellier, France
| | - Franck Pellestor
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Vasiliki Kalatzis
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France.
- University of Montpellier, 34090 Montpellier, France.
| |
Collapse
|