1
|
She R, Fair T, Schaefer NK, Saunders RA, Pavlovic BJ, Weissman JS, Pollen AA. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. Cell 2023; 186:2977-2994.e23. [PMID: 37343560 PMCID: PMC10461406 DOI: 10.1016/j.cell.2023.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/14/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether human cells exhibit distinct genetic dependencies. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell-cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells and cerebral organoids, supporting the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells reshaped the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan K Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge, MA 02142, USA.
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
RB1-Negative Retinal Organoids Display Proliferation of Cone Photoreceptors and Loss of Retinal Differentiation. Cancers (Basel) 2022; 14:cancers14092166. [PMID: 35565295 PMCID: PMC9105736 DOI: 10.3390/cancers14092166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Retinoblastoma is a tumor of the eye’s retina, which is the very specialized tissue responsible for vision. In 98% of cases, the tumor is caused by inactivation of the RB1 gene. Due to lack of material and models, the understanding of RB1 mutations in tumor development is still unsatisfactory. We aimed to establish a human laboratory model for retinoblastoma. While differentiating stem cells with a mutation in RB1 into retina, we observed reduced differentiation potential but enhanced proliferation—general hallmarks of tumor development. The gene expression signature in the model resembled that of tumor material. This approach now enables research on retinoblastoma and probably therapy in the correct tissue, the human retina. Abstract Retinoblastoma is a tumor of the eye in children under the age of five caused by biallelic inactivation of the RB1 tumor suppressor gene in maturing retinal cells. Cancer models are essential for understanding tumor development and in preclinical research. Because of the complex organization of the human retina, such models were challenging to develop for retinoblastoma. Here, we present an organoid model based on differentiation of human embryonic stem cells into neural retina after inactivation of RB1 by CRISPR/Cas9 mutagenesis. Wildtype and RB1 heterozygous mutant retinal organoids were indistinguishable with respect to morphology, temporal development of retinal cell types and global mRNA expression. However, loss of pRB resulted in spatially disorganized organoids and aberrant differentiation, indicated by disintegration of organoids beyond day 130 of differentiation and depletion of most retinal cell types. Only cone photoreceptors were abundant and continued to proliferate, supporting these as candidate cells-of-origin for retinoblastoma. Transcriptome analysis of RB1 knockout organoids and primary retinoblastoma revealed gain of a retinoblastoma expression signature in the organoids, characterized by upregulation of RBL1 (p107), MDM2, DEK, SYK and HELLS. In addition, genes related to immune response and extracellular matrix were specifically upregulated in RB1-negative organoids. In vitro retinal organoids therefore display some features associated with retinoblastoma and, so far, represent the only valid human cancer model for the development of this disease.
Collapse
|