1
|
Passos V, Henkel LM, Wang J, Zapatero-Belinchón FJ, Möller R, Sun G, Waltl I, Schneider T, Wachs A, Ritter B, Kropp KA, Zhu S, Deleidi M, Kalinke U, Schulz TF, Höglinger G, Gerold G, Wegner F, Viejo-Borbolla A. Innate immune response to SARS-CoV-2 infection contributes to neuronal damage in human iPSC-derived peripheral neurons. J Med Virol 2024; 96:e29455. [PMID: 38323709 DOI: 10.1002/jmv.29455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) causes neurological disease in the peripheral and central nervous system (PNS and CNS, respectively) of some patients. It is not clear whether SARS-CoV-2 infection or the subsequent immune response are the key factors that cause neurological disease. Here, we addressed this question by infecting human induced pluripotent stem cell-derived CNS and PNS neurons with SARS-CoV-2. SARS-CoV-2 infected a low number of CNS neurons and did not elicit a robust innate immune response. On the contrary, SARS-CoV-2 infected a higher number of PNS neurons. This resulted in expression of interferon (IFN) λ1, several IFN-stimulated genes and proinflammatory cytokines. The PNS neurons also displayed alterations characteristic of neuronal damage, as increased levels of sterile alpha and Toll/interleukin receptor motif-containing protein 1, amyloid precursor protein and α-synuclein, and lower levels of cytoskeletal proteins. Interestingly, blockade of the Janus kinase and signal transducer and activator of transcription pathway by Ruxolitinib did not increase SARS-CoV-2 infection, but reduced neuronal damage, suggesting that an exacerbated neuronal innate immune response contributes to pathogenesis in the PNS. Our results provide a basis to study coronavirus disease 2019 (COVID-19) related neuronal pathology and to test future preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Vania Passos
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Lisa M Henkel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jiayi Wang
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Francisco J Zapatero-Belinchón
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Rebecca Möller
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guorong Sun
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Talia Schneider
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Amelie Wachs
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Birgit Ritter
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Kai A Kropp
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Shuyong Zhu
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Michela Deleidi
- Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ulrich Kalinke
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Thomas F Schulz
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| | - Günter Höglinger
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| | - Gisa Gerold
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Saito-Diaz K, James C, Patel AJ, Zeltner N. Isolation of human pluripotent stem cell-derived sensory neuron subtypes by immunopanning. Front Cell Dev Biol 2023; 11:1101423. [PMID: 37206924 PMCID: PMC10189519 DOI: 10.3389/fcell.2023.1101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Sensory neurons (SNs) detect a wide range of information from the body and the environment that is critical for homeostasis. There are three main subtypes of SNs: nociceptors, mechanoreceptors, and proprioceptors, which express different membrane proteins, such as TRKA, TRKB, or TRKC, respectively. Human pluripotent stem cell technology provides an ideal platform to study development and diseases of SNs, however there is not a viable method to isolate individual SN subtype for downstream analysis available. Here, we employ the method immunopanning to isolate each SN subtype. This method is very gentle and allows proper survival after the isolation. We use antibodies against TRKA, TRKB, and TRKC to isolate nociceptors, mechanoreceptors, and proprioceptors, respectively. We show that our cultures are enriched for each subtype and express their respective subtype markers. Furthermore, we show that the immunopanned SNs are electrically active and respond to specific stimuli. Thus, our method can be used to purify viable neuronal subtypes using respective membrane proteins for downstream studies.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
| | - Christina James
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
| | - Archie Jayesh Patel
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Impact of Cultured Neuron Models on α-Herpesvirus Latency Research. Viruses 2022; 14:v14061209. [PMID: 35746680 PMCID: PMC9228292 DOI: 10.3390/v14061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
A signature trait of neurotropic α-herpesviruses (α-HV) is their ability to establish stable non-productive infections of peripheral neurons termed latency. This specialized gene expression program is the foundation of an evolutionarily successful strategy to ensure lifelong persistence in the host. Various physiological stresses can induce reactivation in a subset of latently-infected neurons allowing a new cycle of viral productive cycle gene expression and synthesis of infectious virus. Recurring reactivation events ensure transmission of the virus to new hosts and contributes to pathogenesis. Efforts to define the molecular basis of α-HV latency and reactivation have been notoriously difficult because the neurons harboring latent virus in humans and in experimentally infected live-animal models, are rare and largely inaccessible to study. Increasingly, researchers are turning to cultured neuron infection models as simpler experimental platforms from which to explore latency and reactivation at the molecular level. In this review, I reflect on the strengths and weaknesses of existing neuronal models and briefly summarize the important mechanistic insights these models have provided. I also discuss areas where prioritization will help to ensure continued progress and integration.
Collapse
|