1
|
Yu P, Bosholm CC, Zhu H, Duan Z, Atala A, Zhang Y. Beyond waste: understanding urine's potential in precision medicine. Trends Biotechnol 2024; 42:953-969. [PMID: 38369434 PMCID: PMC11741143 DOI: 10.1016/j.tibtech.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Urine-derived stem cells (USCs) are a promising source of stem cells for cell therapy, renal toxicity drug testing, and renal disease biomarker discovery. Patients' own USCs can be used for precision medicine. In this review we first describe the isolation and characterization of USCs. We then discuss preclinical studies investigating the use of USCs in cell therapy, exploring the utility of USCs and USC-derived induced pluripotent stem cells (u-iPSCs) in drug toxicity testing, and investigating the use of USCs as biomarkers for renal disease diagnosis. Finally, we discuss the challenges of using USCs in these applications and provide insights into future research directions. USCs are a promising tool for advancing renal therapy, drug testing, and biomarker discovery. Further research is needed to explore their potential.
Collapse
Affiliation(s)
- Pengfei Yu
- The Fourth Department of Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China; Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carol Christine Bosholm
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hainan Zhu
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhongping Duan
- The Fourth Department of Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Anthony Atala
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Zhao S, Wang L, Ouyang M, Xing S, Liu S, Sun L, Yu H. Polyploid giant cancer cells induced by Docetaxel exhibit a senescence phenotype with the expression of stem cell markers in ovarian cancer cells. PLoS One 2024; 19:e0306969. [PMID: 38990953 PMCID: PMC11239069 DOI: 10.1371/journal.pone.0306969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Docetaxel (Doc) plays a crucial role in clinical antineoplastic practice. However, it is continuously documented that tumors frequently develop chemoresistance and relapse, which may be related to polyploid giant cancer cells (PGCCs). The aim of this study was investigate the formation mechanism and biological behavior of PGCCs induced by Doc. Ovarian cancer cells were treated with Doc, and then the effect of Doc on cellular viability was evaluated by MTT assay and microscopic imaging analysis. The biological properties of PGCCs were further evaluated by Hoechst 33342 staining, cell cycle and DNA content assay, DNA damage response (DDR) signaling detection, β-galactosidase staining, mitochondrial membrane potential detection, and reverse transcription-quantitative polymerase chain reaction. The results indicated that Doc reduced cellular viability; however, many cells were still alive, and were giant and polyploid. Doc increased the proportion of cells stayed in the G2/M phase and reduced the number of cells. In addition, the expression of γ-H2A.X was constantly increased after Doc treatment. PGCCs showed senescence-associated β-galactosidase activity and an increase in the monomeric form of JC-1. The mRNA level of octamer-binding transcription factor 4 (OCT4) and krüppel-like factor 4 (KLF4) was significantly increased in PGCCs. Taken together, our results suggest that Doc induces G2/M cell cycle arrest, inhibits the proliferation and activates persistent DDR signaling to promote the formation of PGCCs. Importantly, PGCCs exhibit a senescence phenotype and express stem cell markers.
Collapse
Affiliation(s)
- Song Zhao
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Mingyue Ouyang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Sining Xing
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuo Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
3
|
Tang Q, Hu Z, Zhao J, Zhou T, Tang S, Wang P, Xiao R, Chen Y, Wu L, Zhou M, Liang D. CRISPR-Mediated In Situ Introduction or Integration of F9-Padua in Human iPSCs for Gene Therapy of Hemophilia B. Int J Mol Sci 2023; 24:ijms24109013. [PMID: 37240366 DOI: 10.3390/ijms24109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Hemophilia B (HB) is an X-linked recessive disease caused by F9 gene mutation and functional coagulation factor IX (FIX) deficiency. Patients suffer from chronic arthritis and death threats owing to excessive bleeding. Compared with traditional treatments, gene therapy for HB has obvious advantages, especially when the hyperactive FIX mutant (FIX-Padua) is used. However, the mechanism by which FIX-Padua works remains ambiguous due to a lack of research models. Here, in situ introduction of F9-Padua mutation was performed in human induced pluripotent stem cells (hiPSCs) via CRISPR/Cas9 and single-stranded oligodeoxynucleotides (ssODNs). The hyperactivity of FIX-Padua was confirmed to be 364% of the normal level in edited hiPSCs-derived hepatocytes, providing a reliable model for exploring the mechanism of the hyperactivity of FIX-Padua. Moreover, the F9 cDNA containing F9-Padua was integrated before the F9 initiation codon by CRISPR/Cas9 in iPSCs from an HB patient (HB-hiPSCs). Integrated HB-hiPSCs after off-target screening were differentiated into hepatocytes. The FIX activity in the supernatant of integrated hepatocytes showed a 4.2-fold increase and reached 63.64% of the normal level, suggesting a universal treatment for HB patients with various mutations in F9 exons. Overall, our study provides new approaches for the exploration and development of cell-based gene therapy for HB.
Collapse
Affiliation(s)
- Qiyu Tang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Zhiqing Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Junya Zhao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Tao Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Shuqing Tang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Peiyun Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Rou Xiao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yan Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Lingqian Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Miaojin Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Desheng Liang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|