Huang ML, Liao YC. Stacking Ensemble and ECA-EfficientNetV2 Convolutional Neural Networks on Classification of Multiple Chest Diseases Including COVID-19.
Acad Radiol 2023;
30:1915-1935. [PMID:
36526533 PMCID:
PMC9748720 DOI:
10.1016/j.acra.2022.11.027]
[Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE AND OBJECTIVES
Early detection and treatment of COVID-19 patients is crucial. Convolutional neural networks have been proven to accurately extract features in medical images, which accelerates time required for testing and increases the effectiveness of COVID-19 diagnosis. This study proposes two classification models for multiple chest diseases including COVID-19.
MATERIALS AND METHODS
The first is Stacking-ensemble model, which stacks six pretrained models including EfficientNetV2-B0, EfficientNetV2-B1, EfficientNetV2-B2, EfficientNetV2-B3, EfficientNetV2-S and EfficientNetV2-M. The second model is self-designed model ECA-EfficientNetV2 based on ECA-Net and EfficientNetV2. Ten-fold cross validation was performed for each model on chest X-ray and CT images. One more dataset, COVID-CT dataset, was tested to verify the performance of the proposed Stacking-ensemble and ECA-EfficientNetV2 models.
RESULTS
The best performance comes from the proposed ECA-EfficientNetV2 model with the highest Accuracy of 99.21%, Precision of 99.23%, Recall of 99.25%, F1-score of 99.20%, and (area under the curve) AUC of 99.51% on chest X-ray dataset; the best performance comes from the proposed ECA-EfficientNetV2 model with the highest Accuracy of 99.81%, Precision of 99.80%, Recall of 99.80%, F1-score of 99.81%, and AUC of 99.87% on chest CT dataset. The differences for five metrics between Stacking-ensemble and ECA-EfficientNetV2 models are not significant.
CONCLUSION
Ensemble model achieves better performance than single pretrained models. Compared to the SOTA, Stacking-ensemble and ECA-EfficientNetV2 models proposed in this study demonstrate promising performance on classification of multiple chest diseases including COVID-19.
Collapse