1
|
Kumar A, Shandal V, Juhász C, Chugani HT. PET imaging in epilepsy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
2
|
Quantitative [18]FDG PET asymmetry features predict long-term seizure recurrence in refractory epilepsy. Epilepsy Behav 2021; 116:107714. [PMID: 33485794 PMCID: PMC8344068 DOI: 10.1016/j.yebeh.2020.107714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Fluorodeoxyglucose-positron emission tomography (FDG-PET) is an established, independent, strong predictor of surgical outcome in refractory epilepsy. In this study, we explored the added value of quantitative [18F]FDG-PET features combined with clinical variables, including electroencephalography (EEG), [18F]FDG-PET, and magnetic resonance imaging (MRI) qualitative interpretations, to predict long-term seizure recurrence (mean post-op follow-up of 5.85 ± 3.77 years). METHODS Machine learning predictive models of surgical outcome were created using a random forest classifier trained on quantitative features in 89 patients with drug-refractory temporal lobe epilepsy evaluated at the Hospital of the University of Pennsylvania epilepsy surgery program (2003-2016). Quantitative features were calculated from asymmetry features derived from image processing using Advanced Normalization Tools (ANTs). RESULTS The best-performing model used quantification and had an out-of-bag accuracy of 0.71 in identifying patients with seizure recurrence (Engel IB or worse) which outperformed that using qualitative clinical data by 10%. This model is shared through open-source software for research use. In addition, several asymmetry features in temporal and extratemporal regions that were significantly associated with seizure freedom are identified for future study. SIGNIFICANCE Complex quantitative [18F]FDG-PET imaging features can predict seizure recurrence in patients with refractory temporal lobe epilepsy. These initial retrospective results in a cohort with long-term follow-up suggest that using quantitative imaging features from regions in the epileptogenic network can inform the clinical decision-making process.
Collapse
|
3
|
Li W, Jiang Y, Qin Y, Zhou B, Lei D, Luo C, Zhang H, Gong Q, Zhou D, An D. Dynamic gray matter and intrinsic activity changes after epilepsy surgery. Acta Neurol Scand 2021; 143:261-270. [PMID: 33058145 DOI: 10.1111/ane.13361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To explore the dynamic changes of gray matter volume and intrinsic brain activity following anterior temporal lobectomy (ATL) in patients with unilateral mesial temporal lobe epilepsy (mTLE) who achieved seizure-free for 2 years. MATERIALS AND METHODS High-resolution T1-weighted MRI and resting-state functional MRI data were obtained in ten mTLE patients at five serial timepoints: before surgery, 3, 6, 12, and 24 months after surgery. The gray matter volume (GMV) and amplitude of low-frequency fluctuations (ALFF) were compared among the five scans to depict the dynamic changes after ATL. RESULTS After successful ATL, GMV decreased in several ipsilateral brain regions: ipsilateral insula, thalamus, and putamen showed gradual gray matter atrophy from 3 to 24 months, while ipsilateral superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, middle occipital gyrus, inferior occipital gyrus, caudate nucleus, lingual gyrus, and fusiform gyrus showed significant GMV decrease at 3 months follow-up, without further changes. Ipsilateral insula showed gradual ALFF decrease from 3 to 24 months after surgery. Ipsilateral superior temporal gyrus showed ALFF decrease at 3 months follow-up, without further changes. Ipsilateral thalamus and cerebellar vermis showed obvious ALFF increase after surgery. CONCLUSIONS Surgical resection may lead to a short-term reduction of gray matter volume and intrinsic brain activity in neighboring regions, while the progressive gray matter atrophy may be due to possible intrinsic mechanism of mTLE. Dynamic ALFF changes provide evidence that disrupted focal spontaneous activities were reorganized after successful surgery.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology West China Hospital Sichuan University Chengdu China
| | - Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute MOE Key Lab for Neuroinformation Center for Information in Medicine School of life Science and technology University of Electronic Science and Technology of China Chengdu China
| | - Yingjie Qin
- Department of Neurology West China Hospital Sichuan University Chengdu China
| | - Baiwan Zhou
- Department of Radiology Huaxi MR Research Center West China Hospital Sichuan University Chengdu China
| | - Du Lei
- Department of Radiology Huaxi MR Research Center West China Hospital Sichuan University Chengdu China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute MOE Key Lab for Neuroinformation Center for Information in Medicine School of life Science and technology University of Electronic Science and Technology of China Chengdu China
- Research Unit of NeuroInformation Chinese Academy of Medical Sciences Chengdu China
| | - Heng Zhang
- Department of Neurosurgery West China Hospital Sichuan University Chengdu China
| | - Qiyong Gong
- Department of Radiology Huaxi MR Research Center West China Hospital Sichuan University Chengdu China
| | - Dong Zhou
- Department of Neurology West China Hospital Sichuan University Chengdu China
| | - Dongmei An
- Department of Neurology West China Hospital Sichuan University Chengdu China
| |
Collapse
|
4
|
Niñerola-Baizán A, Aguiar P, Cabrera-Martín M, Vigil C, Gómez-Grande A, Lorenzo C, Rubí S, Sopena P, Camacho V. Relevance of quantification in brain PET studies with 18F-FDG. Rev Esp Med Nucl Imagen Mol 2020. [DOI: 10.1016/j.remnie.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Niñerola-Baizán A, Aguiar P, Cabrera-Martín MN, Vigil C, Gómez-Grande A, Lorenzo C, Rubí S, Sopena P, Camacho V. Relevance of quantification in brain PET studies with 18F-FDG. Rev Esp Med Nucl Imagen Mol 2020; 39:184-192. [PMID: 32345572 DOI: 10.1016/j.remn.2020.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
The inclusion of 18F-FDG PET as a biomarker in the diagnostic criteria of neurodegenerative diseases and its indication in the presurgical assessment for drug-resistant epilepsies allow to improve specificity of these diagnosis. The traditional interpretation of neurological PET studies has been performed qualitatively, although in the last decade, several quantitative evaluation methods have emerged. This technical development has become relevant in clinical practice, improving specificity, reproducibility and reducing the interrater reliability derived from visual analysis. In this article we update/review the main imaging processing techniques currently used. This may allow the Nuclear Medicine physician to know their advantages and disadvantages when including these procedures in daily clinical practice.
Collapse
Affiliation(s)
- A Niñerola-Baizán
- Servicio de Medicina Nuclear, Hospital Clínic, Barcelona, España; Grupo de Imagen Biomédica, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, España
| | - P Aguiar
- Grupo de Imaxe Molecular e Física Médica, Departamento de Radioloxía, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, España; Servicio de Medicina Nuclear, Hospital Clínico de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, España
| | - M N Cabrera-Martín
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Madrid, España
| | - C Vigil
- Servicio Medicina Nuclear, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, España.
| | - A Gómez-Grande
- Servicio de Medicina Nuclear, Hospital Universitario 12 de Octubre, Madrid, España
| | - C Lorenzo
- Servicio de Medicina Nuclear, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, España
| | - S Rubí
- Servicio de Medicina Nuclear, Hospital Universitari Son Espases, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, España
| | - P Sopena
- Servicio de Medicina Nuclear, Hospital Vithas-Nisa 9 de Octubre, Valencia, España; Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - V Camacho
- Servicio de Medicina Nuclear, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, España
| |
Collapse
|
6
|
Abstract
BACKGROUND This is an updated version of the original Cochrane review, published in 2015.Focal epilepsies are caused by a malfunction of nerve cells localised in one part of one cerebral hemisphere. In studies, estimates of the number of individuals with focal epilepsy who do not become seizure-free despite optimal drug therapy vary between at least 20% and up to 70%. If the epileptogenic zone can be located, surgical resection offers the chance of a cure with a corresponding increase in quality of life. OBJECTIVES The primary objective is to assess the overall outcome of epilepsy surgery according to evidence from randomised controlled trials.Secondary objectives are to assess the overall outcome of epilepsy surgery according to non-randomised evidence, and to identify the factors that correlate with remission of seizures postoperatively. SEARCH METHODS For the latest update, we searched the following databases on 11 March 2019: Cochrane Register of Studies (CRS Web), which includes the Cochrane Epilepsy Group Specialized Register and the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid, 1946 to March 08, 2019), ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). SELECTION CRITERIA Eligible studies were randomised controlled trials (RCTs) that included at least 30 participants in a well-defined population (age, sex, seizure type/frequency, duration of epilepsy, aetiology, magnetic resonance imaging (MRI) diagnosis, surgical findings), with an MRI performed in at least 90% of cases and an expected duration of follow-up of at least one year, and reporting an outcome related to postoperative seizure control. Cohort studies or case series were included in the previous version of this review. DATA COLLECTION AND ANALYSIS Three groups of two review authors independently screened all references for eligibility, assessed study quality and risk of bias, and extracted data. Outcomes were proportions of participants achieving a good outcome according to the presence or absence of each prognostic factor of interest. We intended to combine data with risk ratios (RRs) and 95% confidence intervals (95% CIs). MAIN RESULTS We identified 182 studies with a total of 16,855 included participants investigating outcomes of surgery for epilepsy. Nine studies were RCTs (including two that randomised participants to surgery or medical treatment (99 participants included in the two trials received medical treatment)). Risk of bias in these RCTs was unclear or high. Most of the remaining 173 non-randomised studies followed a retrospective design. We assessed study quality using the Effective Public Health Practice Project (EPHPP) tool and determined that most studies provided moderate or weak evidence. For 29 studies reporting multivariate analyses, we used the Quality in Prognostic Studies (QUIPS) tool and determined that very few studies were at low risk of bias across domains.In terms of freedom from seizures, two RCTs found surgery (n = 97) to be superior to medical treatment (n = 99); four found no statistically significant differences between anterior temporal lobectomy (ATL) with or without corpus callosotomy (n = 60), between subtemporal or transsylvian approach to selective amygdalohippocampectomy (SAH) (n = 47); between ATL, SAH and parahippocampectomy (n = 43) or between 2.5 cm and 3.5 cm ATL resection (n = 207). One RCT found total hippocampectomy to be superior to partial hippocampectomy (n = 70) and one found ATL to be superior to stereotactic radiosurgery (n = 58); and another provided data to show that for Lennox-Gastaut syndrome, no significant differences in seizure outcomes were evident between those treated with resection of the epileptogenic zone and those treated with resection of the epileptogenic zone plus corpus callosotomy (n = 43). We judged evidence from the nine RCTs to be of moderate to very low quality due to lack of information reported about the randomised trial design and the restricted study populations.Of the 16,756 participants included in this review who underwent a surgical procedure, 10,696 (64%) achieved a good outcome from surgery; this ranged across studies from 13.5% to 92.5%. Overall, we found the quality of data in relation to recording of adverse events to be very poor.In total, 120 studies examined between one and eight prognostic factors in univariate analysis. We found the following prognostic factors to be associated with a better post-surgical seizure outcome: abnormal pre-operative MRI, no use of intracranial monitoring, complete surgical resection, presence of mesial temporal sclerosis, concordance of pre-operative MRI and electroencephalography, history of febrile seizures, absence of focal cortical dysplasia/malformation of cortical development, presence of tumour, right-sided resection, and presence of unilateral interictal spikes. We found no evidence that history of head injury, presence of encephalomalacia, presence of vascular malformation, and presence of postoperative discharges were prognostic factors of outcome.Twenty-nine studies reported multi-variable models of prognostic factors, and showed that the direction of association of factors with outcomes was generally the same as that found in univariate analyses.We observed variability in many of our analyses, likely due to small study sizes with unbalanced group sizes and variation in the definition of seizure outcome, the definition of prognostic factors, and the influence of the site of surgery AUTHORS' CONCLUSIONS: Study design issues and limited information presented in the included studies mean that our results provide limited evidence to aid patient selection for surgery and prediction of likely surgical outcomes. Future research should be of high quality, follow a prospective design, be appropriately powered, and focus on specific issues related to diagnostic tools, the site-specific surgical approach, and other issues such as extent of resection. Researchers should investigate prognostic factors related to the outcome of surgery via multi-variable statistical regression modelling, where variables are selected for modelling according to clinical relevance, and all numerical results of the prognostic models are fully reported. Journal editors should not accept papers for which study authors did not record adverse events from a medical intervention. Researchers have achieved improvements in cancer care over the past three to four decades by answering well-defined questions through the conduct of focused RCTs in a step-wise fashion. The same approach to surgery for epilepsy is required.
Collapse
Affiliation(s)
- Siobhan West
- Royal Manchester Children's HospitalDepartment of Paediatric NeurologyHathersage RoadManchesterUKM13 0JH
| | - Sarah J Nevitt
- University of LiverpoolDepartment of BiostatisticsBlock F, Waterhouse Building1‐5 Brownlow HillLiverpoolUKL69 3GL
| | - Jennifer Cotton
- The Clatterbridge Cancer Centre NHS Foundation TrustWirralUK
| | - Sacha Gandhi
- NHS Ayrshire and ArranDepartment of General SurgeryAyrUKKA6 6DX
| | - Jennifer Weston
- Institute of Translational Medicine, University of LiverpoolDepartment of Molecular and Clinical PharmacologyClinical Sciences Centre for Research and Education, Lower LaneFazakerleyLiverpoolMerseysideUKL9 7LJ
| | - Ajay Sudan
- Royal Manchester Children's HospitalDepartment of Paediatric NeurologyHathersage RoadManchesterUKM13 0JH
| | - Roberto Ramirez
- Royal Manchester Children's HospitalHospital RoadPendleburyManchesterUKM27 4HA
| | - Richard Newton
- Royal Manchester Children's HospitalDepartment of Paediatric NeurologyHathersage RoadManchesterUKM13 0JH
| | | |
Collapse
|
7
|
Outcome after individualized stereoelectroencephalography (sEEG) implantation and navigated resection in patients with lesional and non-lesional focal epilepsy. J Neurol 2019; 266:910-920. [PMID: 30701313 DOI: 10.1007/s00415-019-09213-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Refined localization of the epileptogenic zone (EZ) in patients with pharmacoresistant focal epilepsy proceeding to resective surgery might improve postoperative outcome. We here report seizure outcome after stereo EEG (sEEG) evaluation with individually planned stereotactically implanted depth electrodes and subsequent tailored resection. METHODS A cohort of consecutive patients with pharmacoresistant focal epilepsy, evaluated with a non-invasive evaluation protocol and invasive monitoring with personalized, stereotactically implanted depth electrodes for sEEG was analyzed. Co-registration of post-implantation CT scan to presurgical MRI data was used for 3D reconstructions of the patients' brain surface and mapping of neurophysiology data. Individual multimodal 3D maps of the EZ were used to guide subsequent tailored resections. The outcome was rated according to the Engel classification. RESULTS Out of 914 patients who underwent non-invasive presurgical evaluation, 85 underwent sEEG, and 70 were included in the outcome analysis. Median follow-up was 31.5 months. Seizure-free outcome (Engel class I A-C, ILAE class 1-2) was achieved in 83% of the study cohort. Patients exhibiting lesional and non-lesional (n = 42, 86% vs. n = 28, 79%), temporal and extratemporal (n = 45, 80% vs. n = 25, 84%), and right- and left-hemispheric epilepsy (n = 44, 82% vs. n = 26, 85%) did similarly well. This remains also true for those with an EZ adjacent to or distant from eloquent cortex (n = 21, 86% vs. n = 49, 82%). Surgical outcome was independent of resected tissue volume. CONCLUSION Favourable post-surgical outcome can be achieved in patients with resistant focal epilepsy, using individualized sEEG evaluation and tailored navigated resection, even in patients with non-lesional or extratemporal focal epilepsy.
Collapse
|
8
|
Koenig JB, Dulla CG. Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Front Cell Neurosci 2018; 12:350. [PMID: 30459556 PMCID: PMC6232824 DOI: 10.3389/fncel.2018.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
9
|
Imaging correlates of behavioral impairments: An experimental PET study in the rat pilocarpine epilepsy model. Neurobiol Dis 2018; 118:9-21. [DOI: 10.1016/j.nbd.2018.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 01/04/2023] Open
|
10
|
Quantitative volume-based morphometry in focal cortical dysplasia: A pilot study for lesion localization at the individual level. Eur J Radiol 2018; 105:240-245. [DOI: 10.1016/j.ejrad.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/16/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022]
|
11
|
Higo T, Sugano H, Nakajima M, Karagiozov K, Iimura Y, Suzuki M, Sato K, Arai H. The predictive value of FDG-PET with 3D-SSP for surgical outcomes in patients with temporal lobe epilepsy. Seizure 2016; 41:127-33. [DOI: 10.1016/j.seizure.2016.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/30/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022] Open
|
12
|
Doucet GE, He X, Sperling M, Sharan A, Tracy JI. Frontal gray matter abnormalities predict seizure outcome in refractory temporal lobe epilepsy patients. NEUROIMAGE-CLINICAL 2015; 9:458-66. [PMID: 26594628 PMCID: PMC4596924 DOI: 10.1016/j.nicl.2015.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Abstract
Developing more reliable predictors of seizure outcome following temporal lobe surgery for intractable epilepsy is an important clinical goal. In this context, we investigated patients with refractory temporal lobe epilepsy (TLE) before and after temporal resection. In detail, we explored gray matter (GM) volume change in relation with seizure outcome, using a voxel-based morphometry (VBM) approach. To do so, this study was divided into two parts. The first one involved group analysis of differences in regional GM volume between the groups (good outcome (GO), e.g., no seizures after surgery; poor outcome (PO), e.g., persistent postoperative seizures; and controls, N = 24 in each group), pre- and post-surgery. The second part of the study focused on pre-surgical data only (N = 61), determining whether the degree of GM abnormalities can predict surgical outcomes. For this second step, GM abnormalities were identified, within each lobe, in each patient when compared with an ad hoc sample of age-matched controls. For the first analysis, the results showed larger GM atrophy, mostly in the frontal lobe, in PO patients, relative to both GO patients and controls, pre-surgery. When comparing pre-to-post changes, we found relative GM gains in the GO but not in the PO patients, mostly in the non-resected hemisphere. For the second analysis, only the frontal lobe displayed reliable prediction of seizure outcome. 81% of the patients showing pre-surgical increased GM volume in the frontal lobe became seizure free, post-surgery; while 77% of the patients with pre-surgical reduced frontal GM volume had refractory seizures, post-surgery. A regression analysis revealed that the proportion of voxels with reduced frontal GM volume was a significant predictor of seizure outcome (p = 0.014). Importantly, having less than 1% of the frontal voxels with GM atrophy increased the likelihood of being seizure-free, post-surgery, by seven times. Overall, our results suggest that using pre-surgical GM abnormalities within the frontal lobe is a reliable predictor of seizure outcome post-surgery in TLE. We believe that this frontal GM atrophy captures seizure burden outside the pre-existing ictal temporal lobe, reflecting either the development of epileptogenesis or the loss of a protective, adaptive force helping to control or limit seizures. This study provides evidence of the potential of VBM-based approaches to predict surgical outcomes in refractory TLE candidates. Gray matter abnormalities within the frontal lobe predicts seizure outcome in TLE. Poor outcome patients suffer from GM atrophy in the frontal lobe, pre-surgery. Good outcome patients show gain of GM in the non-resected hemisphere, post-surgery. Frontal GM atrophy captures seizure burden outside the ictal temporal lobe.
Collapse
Affiliation(s)
- Gaelle E Doucet
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiaosong He
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph I Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Abstract
BACKGROUND Focal epilepsies are caused by a malfunction of nerve cells localised in one part of one cerebral hemisphere. In studies, estimates of the number of individuals with focal epilepsy who do not become seizure-free despite optimal drug therapy vary according to the age of the participants and which focal epilepsies are included, but have been reported as at least 20% and in some studies up to 70%. If the epileptogenic zone can be located surgical resection offers the chance of a cure with a corresponding increase in quality of life. OBJECTIVES The primary objective is to assess the overall outcome of epilepsy surgery according to evidence from randomised controlled trials.The secondary objectives are to assess the overall outcome of epilepsy surgery according to non-randomised evidence and to identify the factors that correlate to remission of seizures postoperatively. SEARCH METHODS We searched the Cochrane Epilepsy Group Specialised Register (June 2013), the Cochrane Central Register of Controlled Trials (CENTRAL 2013, Issue 6), MEDLINE (Ovid) (2001 to 4 July 2013), ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) for relevant trials up to 4 July 2013. SELECTION CRITERIA Eligible studies were randomised controlled trials (RCTs), cohort studies or case series, with either a prospective and/or retrospective design, including at least 30 participants, a well-defined population (age, sex, seizure type/frequency, duration of epilepsy, aetiology, magnetic resonance imaging (MRI) diagnosis, surgical findings), an MRI performed in at least 90% of cases and an expected duration of follow-up of at least one year, and reporting an outcome relating to postoperative seizure control. DATA COLLECTION AND ANALYSIS Three groups of two review authors independently screened all references for eligibility, assessed study quality and risk of bias, and extracted data. Outcomes were proportion of participants achieving a good outcome according to the presence or absence of each prognostic factor of interest. We intended to combine data with risk ratios (RR) and 95% confidence intervals. MAIN RESULTS We identified 177 studies (16,253 participants) investigating the outcome of surgery for epilepsy. Four studies were RCTs (including one that randomised participants to surgery or medical treatment). The risk of bias in the RCTs was unclear or high, limiting our confidence in the evidence that addressed the primary review objective. Most of the remaining 173 non-randomised studies had a retrospective design; they were of variable size, were conducted in a range of countries, recruited a wide demographic range of participants, used a wide range of surgical techniques and used different scales used to measure outcomes. We performed quality assessment using the Effective Public Health Practice Project (EPHPP) tool and determined that most studies provided moderate or weak evidence. For 29 studies reporting multivariate analyses we used the Quality in Prognostic Studies (QUIPS) tool and determined that very few studies were at low risk of bias across the domains.In terms of freedom from seizures, one RCT found surgery to be superior to medical treatment, two RCTs found no statistically significant difference between anterior temporal lobectomy (ATL) with or without corpus callosotomy or between 2.5 cm or 3.5 cm ATL resection, and one RCT found total hippocampectomy to be superior to partial hippocampectomy. We judged the evidence from the four RCTs to be of moderate to very low quality due to the lack of information reported about the randomised trial design and the restricted study populations.Of the 16,253 participants included in this review, 10,518 (65%) achieved a good outcome from surgery; this ranged across studies from 13.5% to 92.5%. Overall, we found the quality of data in relation to the recording of adverse events to be very poor.In total, 118 studies examined between one and eight prognostic factors in univariate analysis. We found the following prognostic factors to be associated with a better post-surgical seizure outcome: an abnormal pre-operative MRI, no use of intracranial monitoring, complete surgical resection, presence of mesial temporal sclerosis, concordance of pre-operative MRI and electroencephalography (EEG), history of febrile seizures, absence of focal cortical dysplasia/malformation of cortical development, presence of tumour, right-sided resection and presence of unilateral interictal spikes. We found no evidence that history of head injury, presence of encephalomalacia, presence of vascular malformation or presence of postoperative discharges were prognostic factors of outcome. We observed variability between studies for many of our analyses, likely due to the small study sizes with unbalanced group sizes, variation in the definition of seizure outcome, definition of the prognostic factor and the influence of the site of surgery, all of which we observed to be related to postoperative seizure outcome. Twenty-nine studies reported multivariable models of prognostic factors and the direction of association of factors with outcome was generally the same as found in the univariate analyses. However, due to the different multivariable analysis approaches and selective reporting of results, meaningful comparison of multivariate analysis with univariate meta-analysis is difficult. AUTHORS' CONCLUSIONS The study design issues and limited information presented in the included studies mean that our results provide limited evidence to aid patient selection for surgery and prediction of likely surgical outcome. Future research should be of high quality, have a prospective design, be appropriately powered and focus on specific issues related to diagnostic tools, the site-specific surgical approach and other issues such as the extent of resection. Prognostic factors related to the outcome of surgery should be investigated via multivariable statistical regression modelling, where variables are selected for modelling according to clinical relevance and all numerical results of the prognostic models are fully reported. Protocols should include pre- and postoperative measures of speech and language function, cognition and social functioning along with a mental state assessment. Journal editors should not accept papers where adverse events from a medical intervention are not recorded. Improvements in the development of cancer care over the past three to four decades have been achieved by answering well-defined questions through the conduct of focused RCTs in a step-wise fashion. The same approach to surgery for epilepsy is required.
Collapse
Affiliation(s)
- Siobhan West
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Hathersage Road, Manchester, UK, M13 0JH
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Over the past 35 years or so, PET brain imaging has allowed powerful and unique insights into brain function under normal conditions and in disease states. Initially, as PET instrumentation continued to develop, studies were focused on brain perfusion and glucose metabolism. This permitted refinement of brain imaging for important, non-oncologic clinical indications. The ability of PET to not only provide spatial localization of metabolic changes but also to accurately and consistently quantify their distribution proved valuable for applications in the clinical setting. Specifically, glucose metabolism brain imaging using (F-18) fluorodeoxyglucose continues to be invaluable for evaluating patients with intractable seizures for identifying seizure foci and operative planning. Cerebral glucose metabolism also contributes to diagnosis of neurodegenerative diseases that cause dementia. Alzheimer disease, dementia with Lewy bodies, and the several variants of frontotemporal lobar degeneration have differing typical patterns of hypometabolism. In Alzheimer disease, hypometabolism has furthermore been associated with poorer cognitive performance and ensuing cognitive and functional decline. As the field of radiochemistry evolved, novel radioligands including radiolabeled flumazenil, dopamine transporter ligands, nicotine receptor ligands, and others have allowed for further understanding of molecular changes in the brain associated with various diseases. Recently, PET brain imaging reached another milestone with the approval of (F-18) florbetapir imaging by the United States Federal Drug Administration for detection of amyloid plaque accumulation in brain, the major histopathologic hallmark of Alzheimer disease, and efforts have been made to define the clinical role of this imaging agent in the setting of the currently limited treatment options. Hopefully, this represents the first of many new radiopharmaceuticals that would allow improved diagnostic and prognostic information in these and other clinical applications, including Parkinson disease and traumatic brain injury.
Collapse
Affiliation(s)
- Ilya Nasrallah
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
15
|
Abstract
Positron emission tomography (PET) has been widely used in the study of seizure disorders. As a research tool, PET has been used to determine the pathophysiology of different seizures disorders, prognostic and diagnostic information, and the response to various interventions. PET imaging has also been used clinically to help with the detection of seizure foci. With the continued development of a large array of radiopharmaceuticals that can evaluate all of the components of different neurotransmitter systems as well as cerebral blood flow and metabolism, PET imaging will continue to play a key role in research and clinical applications for seizure disorders.
Collapse
Affiliation(s)
- Abass Alavi
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
16
|
Abstract
Positron emission tomography (PET) imaging has been widely used in the evaluation and management of patients with seizure disorders. The ability of PET to measure cerebral function makes it ideal for studying the neurophysiologic correlates of seizure activity during ictal and interictal states. PET imaging is also useful for evaluating patients before surgical interventions to determine the best surgical method and maximize outcomes. Thus, PET will continue to play a major role not only in the clinical arena but in further investigations of the pathogenesis and management of various seizure disorders. This article reviews the literature regarding the current uses and indications for PET in the study and management of patients with seizure disorders.
Collapse
Affiliation(s)
- Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 110 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Andrew B Newberg
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 110 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|