1
|
Lin CH, Ho CJ, Chen SY, Lu YT, Tsai MH. Review of pharmacogenetics of antiseizure medications: focusing on genetic variants of mechanistic targets. Front Pharmacol 2024; 15:1411487. [PMID: 39228521 PMCID: PMC11368862 DOI: 10.3389/fphar.2024.1411487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
Antiseizure medications (ASMs) play a central role in seizure management, however, unpredictability in the response to treatment persists, even among patients with similar seizure manifestations and clinical backgrounds. An objective biomarker capable of reliably predicting the response to ASMs would profoundly impact epilepsy treatment. Presently, clinicians rely on a trial-and-error approach when selecting ASMs, a time-consuming process that can result in delays in receiving alternative non-pharmacological therapies such as a ketogenetic diet, epilepsy surgery, and neuromodulation therapies. Pharmacogenetic studies investigating the correlation between ASMs and genetic variants regarding their mechanistic targets offer promise in predicting the response to treatment. Sodium channel subunit genes have been extensively studied along with other ion channels and receptors as targets, however, the results have been conflicting, possibly due to methodological disparities including inconsistent definitions of drug response, variations in ASM combinations, and diversity of genetic variants/genes studied. Nonetheless, these studies underscore the potential effect of genetic variants on the mechanism of ASMs and consequently the prediction of treatment response. Recent advances in sequencing technology have led to the generation of large genetic datasets, which may be able to enhance the predictive accuracy of the response to ASMs.
Collapse
Affiliation(s)
- Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Almuqairsha SA, Al-Harbi FA, Alaidah AM, Al-Mutairi TA, Al-Oadah EK, Almatham AE, Alharbi FM, Almoshaigah AN. Demographics, Clinical Characteristics, and Management Strategies of Epilepsy in Saudi Arabia: A Systematic Review. Cureus 2024; 16:e63436. [PMID: 39077233 PMCID: PMC11284618 DOI: 10.7759/cureus.63436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 07/31/2024] Open
Abstract
Epilepsy accounts for a large part of the global burden of neurological disorders. This review aimed to assess the demographics, clinical characteristics, and management of patients with epilepsy in Saudi Arabia based on studies published from 2018 to 2023. A systematic review was carried out using PubMed, Medline, Embase, and Cochrane Library from January 2018 to January 2023, where key terms related to the epidemiology, clinical characteristics, treatment, and management strategy of epilepsy in Saudi Arabia were used to search for related studies. All relevant articles published in this period in the English language were included, and data about authors, year of the study, sample size, study design, demographic characteristics, clinical characteristics, and treatment strategy were collected. A male preponderance, a 6-24.9% family history of epilepsy, an equal distribution of focal and tonic-clonic epilepsy, EEG abnormalities of 19.7-70%, and a higher prevalence of monotherapy regimens were the main findings of this review.
Collapse
|
3
|
Dhureja M, Chaturvedi P, Choudhary A, Kumar P, Munshi A. Molecular Insights of Drug Resistance in Epilepsy: Multi-omics Unveil. Mol Neurobiol 2024:10.1007/s12035-024-04220-6. [PMID: 38753128 DOI: 10.1007/s12035-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
4
|
Tang HX, Ho MD, Vu NP, Cao HV, Ngo VA, Nguyen VT, Nguyen TD, Nguyen TD. Association between Genetic Polymorphism of SCN1A, GABRA1 and ABCB1 and Drug Responsiveness in Vietnamese Epileptic Children. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:637. [PMID: 38674283 PMCID: PMC11052159 DOI: 10.3390/medicina60040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Drug resistant epilepsy (DRE) is a major hurdle in epilepsy, which hinders clinical care, patients' management and treatment outcomes. DRE may partially result from genetic variants that alter proteins responsible for drug targets and drug transporters in the brain. We aimed to examine the relationship between SCN1A, GABRA1 and ABCB1 polymorphism and drug response in epilepsy children in Vietnam. Materials and Methods: In total, 213 children diagnosed with epilepsy were recruited in this study (101 were drug responsive and 112 were drug resistant). Sanger sequencing had been performed in order to detect six single nucleotide polymorphisms (SNPs) belonging to SCN1A (rs2298771, rs3812718, rs10188577), GABRA1 (rs2279020) and ABCB1 (rs1128503, rs1045642) in study group. The link between SNPs and drug response status was examined by the Chi-squared test or the Fisher's exact test. Results: Among six investigated SNPs, two SNPs showed significant difference between the responsive and the resistant group. Among those, heterozygous genotype of SCN1A rs2298771 (AG) were at higher frequency in the resistant patients compared with responsive patients, playing as risk factor of refractory epilepsy. Conversely, the heterozygous genotype of SCN1A rs3812718 (CT) was significantly lower in the resistant compared with the responsive group. No significant association was found between the remaining four SNPs and drug response. Conclusions: Our study demonstrated a significant association between the SCN1A genetic polymorphism which increased risk of drug-resistant epilepsy in Vietnamese epileptic children. This important finding further supports the underlying molecular mechanisms of SCN1A genetic variants in the pathogenesis of drug-resistant epilepsy in children.
Collapse
Affiliation(s)
- Hai Xuan Tang
- Nghe An Obstetrics and Pediatrics Hospital, 19 Ton That Tung, Vinh 460000, Nghe An, Vietnam; (H.X.T.); (M.D.H.)
| | - Muoi Dang Ho
- Nghe An Obstetrics and Pediatrics Hospital, 19 Ton That Tung, Vinh 460000, Nghe An, Vietnam; (H.X.T.); (M.D.H.)
| | - Nhung Phuong Vu
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay 100000, Hanoi, Vietnam;
| | - Hung Vu Cao
- Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da 100000, Hanoi, Vietnam; (H.V.C.); (V.A.N.); (V.T.N.)
| | - Vinh Anh Ngo
- Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da 100000, Hanoi, Vietnam; (H.V.C.); (V.A.N.); (V.T.N.)
| | - Van Thi Nguyen
- Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da 100000, Hanoi, Vietnam; (H.V.C.); (V.A.N.); (V.T.N.)
| | - Thuan Duc Nguyen
- Department of Neurology, Military Hospital 103, Vietnam Military Medical University, 261 Phung Hung, Ha Dong 100000, Hanoi, Vietnam;
| | - Ton Dang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay 100000, Hanoi, Vietnam;
| |
Collapse
|
5
|
Asadi-Pooya AA, Malekpour M, Taherifard E, Mallahzadeh A, Farjoud Kouhanjani M. Coexistence of temporal lobe epilepsy and idiopathic generalized epilepsy. Epilepsy Behav 2024; 151:109602. [PMID: 38160579 DOI: 10.1016/j.yebeh.2023.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE We investigated the frequency of coexistence of temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) in a retrospective database study. We also explored the underlying pathomechanisms of the coexistence of TLE and IGE based on the available information, using bioinformatics tools. METHODS The first phase of the investigation was a retrospective study. All patients with an electro-clinical diagnosis of epilepsy were studied at the outpatient epilepsy clinic at Shiraz University of Medical Sciences, Shiraz, Iran, from 2008 until 2023. In the second phase, we searched the following databases for genetic variations (epilepsy-associated genetic polymorphisms) that are associated with TLE or syndromes of IGE: DisGeNET, genome-wide association study (GWAS) Catalog, epilepsy genetic association database (epiGAD), and UniProt. We also did a separate literature search using PubMed. RESULTS In total, 3760 patients with epilepsy were registered at our clinic; four patients with definitely mixed TLE and IGE were identified; 0.1% of all epilepsies. We could identify that rs1883415 of ALDH5A1, rs137852779 of EFHC1, rs211037 of GABRG2, rs1130183 of KCNJ10, and rs1045642 of ABCB1 genes are shared between TLE and syndromes of IGE. CONCLUSION While coexistence of TLE and IGE is a rare phenomenon, this could be explained by shared genetic variations.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mahdi Malekpour
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Taherifard
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arashk Mallahzadeh
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
6
|
Magadmi R, Alyoubi R. Demographic and Clinical Predictors of Drug Response in Epileptic Children in Jeddah. Biomedicines 2023; 11:2151. [PMID: 37626648 PMCID: PMC10452810 DOI: 10.3390/biomedicines11082151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Epilepsy is a chronic neurological disease of the brain. Over 20 antiseizure medications are available on the market, but a third of patients still have drug-resistant epilepsy. This study was designed to assess the impact of the demographic and clinical characteristics of epileptic children on their likelihood of developing drug resistance. This study was a multicenter, hospital-based, cross-sectional, case-control study of pediatric patients diagnosed with epilepsy in Jeddah, Saudi Arabia. The study included 101 children with epilepsy. Fifty-six patients showed good response to antiseizure medications (ASMs), and forty-five patients had a poor response. A statistically significant good response to ASMs was reported among younger patients, those who did not report parental consanguinity, those who did not have a family history of epilepsy, and those diagnosed with partial seizures, with no reported adverse effects. The levetiracetam regimen was statistically significant regarding the responsiveness to ASMs. Patients on a monotherapy regimen elicited a significantly better response to levetiracetam than patients on polytherapy (p < 0.001). No significant association was found between the response to ASMs and the sex, nationality, body mass index, complete blood count, or vitamin B12 level. In conclusion, the ASM response in epileptic patients can be predicted by knowing the patient's demographic and epileptic history. However, the complete blood count and vitamin B12 level failed to predict patients' response to ASMs.
Collapse
Affiliation(s)
- Rania Magadmi
- Clinical Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reem Alyoubi
- Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
7
|
Hu X, Zhao M, Yang X, Wang D, Wu Q. Association between the SLC6A11 rs2304725 and GABRG2 rs211037 polymorphisms and drug-resistant epilepsy: a meta-analysis. Front Physiol 2023; 14:1191927. [PMID: 37275237 PMCID: PMC10235491 DOI: 10.3389/fphys.2023.1191927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Background: Previous studies have shown that SLC6A11 and GABRG2 are linked to drug-resistant epilepsy (DRE), although there have been conflicting results in the literature. In this study, we systematically assessed the relationship between DRE and these two genes. Methods: We systematically searched the PubMed, Embase, Cochrane Library, Web of Science, Google Scholar, Wanfang Data, CNKI, and VIP databases. To clarify whether heterogeneity existed between studies, tools such as the Q-test and I 2 statistic were selected. According to study heterogeneity, we chose fixed- or random-effects models for analysis. We then used the chi-squared ratio to evaluate any bias of the experimental data. Results: In total, 11 trials and 3,813 patients were selected. To investigate the relationship with DRE, we performed model tests on the two genes separately. The results showed that SLC6A11 rs2304725 had no significant correlation with DRE risk in the allele, dominant, recessive, and additive models in a pooled population. However, for the over-dominant model, DRE was correlated with rs2304725 (OR = 1.08, 95% CI: 0.92-1.27, p = 0.33) in a pooled population. Similarly, rs211037 was weakly significantly correlated with DRE for the dominant, recessive, over-dominant, and additive models in a pooled population. The subgroup analysis results showed that rs211037 expressed a genetic risk of DRE in allele (OR = 1.01, 95% CI: 0.76-1.35, p = 0.94), dominant (OR = 1.08, 95% CI: 0.77-1.50, p = 0.65), and additive models (OR = 1.14, 95% CI: 0.62-2.09, p = 0.67) in an Asian population. Conclusion: In this meta-analysis, our results showed that SLC6A11 rs2304725 and GABRG2 rs211037 are not significantly correlated with DRE. However, in the over-dominant model, rs2304725 was significantly correlated with DRE. Likewise, rs211037 conveyed a genetic risk for DRE in an Asian population in the allele, dominant, and additive models.
Collapse
Affiliation(s)
- Xuemei Hu
- Clinical Medical College of Jining Medical University, Jining, Shandong, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Mingyang Zhao
- Clinical Medical College of Jining Medical University, Jining, Shandong, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Xue Yang
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Dongsen Wang
- Clinical Medical College of Jining Medical University, Jining, Shandong, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| |
Collapse
|
8
|
Saleem T, Maqbool H, Sheikh N, Tayyeb A, Mukhtar M, Ashfaq A. GABRG2 C588T Polymorphism Is Associated with Idiopathic Generalized Epilepsy but Not with Antiepileptic Drug Resistance in Pakistani Cohort. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3460792. [PMID: 36425336 PMCID: PMC9681559 DOI: 10.1155/2022/3460792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 08/30/2023]
Abstract
Idiopathic generalized epilepsy (IGE) is the most prevalent type of epilepsy with genetic origin. Mutations in ion channel genes have been identified as a common cause of IGE. Several studies have reported various epilepsy risk variants of GABRG2 (gamma-aminobutyric acid type A receptor subunit gamma2 subunit) gene in different ethnic groups, but the results are inconsistent. The purpose of this case-control research is to determine if GABRG2 polymorphisms contribute to IGE susceptibility and antiepileptic drug resistance in Pakistani population. For this purpose, we genotyped exon2, exon5 (C540T and C588T), exon7 (T813C), exon8 (K289M), and exon9 of GABRG2 gene by restriction fragment length polymorphism and Sanger's sequencing in 87 drug-responsive idiopathic generalized epilepsy patients, 55 drug-resistant epilepsy patients, and 83 healthy controls. Restriction fragment length polymorphism (RFLP) and sequencing results indicated only C588T polymorphism in the studied subjects. The comparison of genotypic and allelic frequencies showed significant differences between IGE patients and control groups (P = 0.008 and odds ratio = 4.2) and nonsignificant association of C588T polymorphism in antiseizure medication-resistant patients (P = 0.9). Our findings showed that C588T polymorphism of GABRG2 is a risk variant for IGE in Pakistani population. Further studies are required to validate the results.
Collapse
Affiliation(s)
- Tayyaba Saleem
- Cell and Molecular Biology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Hafsa Maqbool
- Cell and Molecular Biology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Sheikh
- Cell and Molecular Biology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Maryam Mukhtar
- Cell and Molecular Biology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Aqsa Ashfaq
- Cell and Molecular Biology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Ullah S, Ali N, Ahmad S, Sha SWA, Ali S, Almarshad F. The likelihood approach for potential role of "GABRG2 (C588T, C315T) gene polymorphisms" on the poor response to carbamazepine therapy in Pakhtun population of Pakistan. Medicine (Baltimore) 2022; 101:e30948. [PMID: 36221407 PMCID: PMC9542555 DOI: 10.1097/md.0000000000030948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Gamma-aminobutyric acid A receptor, gamma 2 gene (GABRG2) encode the GABAA receptor which is responsible for fast neuronal inhibition. Polymorphisms in GABGR2 gene affect the clinical response of anti-epileptic drugs (AEDs). Therefore, we carried out an updated study to find the association GABRG2 gene polymorphisms with carbamazepine (CBZ) non-responsive therapy in the Pakhtun population. METHODS A clinical prospective cohort study was conducted in 79 CBZ treated patients upon consent after the approval of Khyber Medical University Advanced Study and Research Board. Blood sample were taken at optimal dose of CBZ at base line, third and sixth months of the treatment. Blood level of CBZ was measure through reverse phase high performance liquid chromatography (HPLC). Restriction fragment length polymorphisms techniques were used to genotype GABRG2 gene in these patients. CBZ responses were evaluated on three and six months of study by measuring the decrease in frequency of seizure per week. RESULTS The average maximum dose of CBZ was 455 ± 133 mg/day at baseline, 479 ± 142 mg/day at third month and 495 ± 133 mg/day at sixth month of the treatment. CBZ level was found within therapeutic range (4-12 mg/L) without any significant (P > .5) variations among the CC, CT and TT genotypes of GABRG2 (C588T and C315T) gene. But the poor clinical response during CBZ treatment was linked (P < .05) with CT and TT genotypes of GABRG2 (C588T and C315T) gene in Pakhtun Population. CONCLUSION A poor response to CBZ was found in variant genotypes (CT and TT) of GABRG2 (C588T and C315T) gene in Pakhtun Population.
Collapse
Affiliation(s)
- Shakir Ullah
- Department of Pharmacology Institute of Basic Medical Science, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
- * Correspondence: Shakir Ullah, Institute of Basic Medical Sciences/Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan (e-mail: )
| | - Niaz Ali
- Department of Pharmacology Institute of Basic Medical Science, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sajjad Ahmad
- Department of Pharmacology Institute of Basic Medical Science, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Syed Wadood Ali Sha
- Department of Pharmacy (Pharmacology), University of Malakand, Chakdara, Pakistan
| | - Saad Ali
- Department of Neurology, Govt. Lady Reading Hospital Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | |
Collapse
|
10
|
Zhang T, Yang Y, Sima X. No association of GABRA1 rs2279020 and GABRA6 rs3219151 polymorphisms with risk of epilepsy and antiepileptic drug responsiveness in Asian and Arabic populations: Evidence from a meta-analysis with trial sequential analysis. Front Neurol 2022; 13:996631. [PMID: 36188399 PMCID: PMC9518753 DOI: 10.3389/fneur.2022.996631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The γ-aminobutyric acid type A receptors (GABAAR) have been reported to contribute to the pathogenesis of epilepsy and the recurrence of chronic seizures. Genetic polymorphisms in GABRA1 and GABRA6 may confer a high risk of epilepsy and multiple drug resistance, but with conflicting results. We aimed to assess the association of GABRA1 rs2279020 and GABRA6 rs3219151 with epilepsy risk using a meta-analysis. The databases of Pubmed, Ovid, Web of Science, and China National Knowledge Infrastructure were searched. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were computed to evaluate the association between the polymorphisms and epilepsy risk using a fixed- or random-effect model. Trial sequential analysis (TSA) was performed to assess the results of the meta-analysis. No significant association between the GABRA1 rs2279020 and GABRA6 rs3219151 and the risk of epilepsy was found in the Asian and Arabic populations. The negative results were also observed when comparing the GABRA1 rs2279020 and GABRA6 rs3219151 polymorphism to antiepileptic drug responsiveness. The trial sequential analysis confirmed the results of the meta-analysis. This meta-analysis suggests that GABRA1 rs2279020 and GABRA6 rs3219151 are not risk factors for the etiology of epilepsy and antiepileptic drug responsiveness in the Asian and Arabic populations.
Collapse
Affiliation(s)
- Tiejun Zhang
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Chengdu Seventh People's Hospital, Chengdu, China
| | - Xiutian Sima
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiutian Sima
| |
Collapse
|
11
|
Amjad M, Tabassum A, Sher K, Kumar S, Zehra S, Fatima S. Impact of GABAA receptor gene variants (rs2279020 and rs211037) on the risk of predisposition to epilepsy: a case–control study. Neurol Sci 2022; 43:4431-4438. [DOI: 10.1007/s10072-022-05947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
12
|
GABRA1 and GABRA6 gene mutations in idiopathic generalized epilepsy patients. Seizure 2021; 93:88-94. [PMID: 34740144 DOI: 10.1016/j.seizure.2021.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
The GABA receptor is an important epilepsy-associated candidate gene, and has always been a focus in etiology and in the treatment of epilepsy. This study explores the genetic association between GABA receptor gene polymorphisms and epilepsy in a cohort of the Pakistani population. A case-control study was conducted on 150 patients with idiopathic generalized epilepsy (IGE) and 150 controls. Blood samples were collected, and genomic DNA was extracted and amplified using polymerase chain reaction (PCR). The amplified products were subsequently genotyped by Sanger sequencing and the results were analyzed using the chi-square test. Among the five mutational sites observed, two GABRA1 (rs2279020 and novel c.1016_1017insT) and two GABRA6 (rs3219151 and novel c.1344C>G) were found to be significantly associated with IGE. Amino acid alignment showed that a novel insertion mutation, c.1016_1017insT, in GABRA1 disrupted the reading frame and was possibly damaging, whereas c.1344C>G in GABRA6 was responsible for a synonymous mutation. Therefore, both the GABA receptor genes may play critical roles in the development of epilepsy in Pakistani patients.
Collapse
|
13
|
Lu J, Xia H, Li W, Shen X, Guo H, Zhang J, Fan X. Genetic Polymorphism of GABRG2 rs211037 is Associated with Drug Response and Adverse Drug Reactions to Valproic Acid in Chinese Southern Children with Epilepsy. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1141-1150. [PMID: 34552348 PMCID: PMC8450188 DOI: 10.2147/pgpm.s329594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022]
Abstract
Background Valproic acid (VPA) is recommended as a first-line treatment for children with epilepsy. GABRG2 polymorphism is found to be associated with epilepsy susceptibility and therapeutic response of anti-seizure medications (ASM); however, the role of GABRG2 in VPA treatment still remains unknown. Objective The purpose of this study was to explore the association of GABRG2 gene polymorphism with the drug response and adverse drug reactions (ADRs) related to VPA. Methods A retrospective study including 96 Chinese children with epilepsy treated by VPA was carried out. The ADRs were collected during VPA therapy and GABRG2 rs211037 in enrolled patients was genotyped using Sequenom MassArray system. A network pharmacological analysis involved protein–protein interaction and enrichment analysis was constructed to investigate the potential targets and pathways of GABRG2 on VPA-related ADRs. Results Among 96 patients, 41 individuals were defined as seizure together with 49 patients with seizure-free and 6 patients unclassified. Carriers of homozygote GABRG2 rs211037 CC genotype exhibited seizure-free to VPA (P = 0.042), whereas those with CT genotype showed seizure. Furthermore, CC genotype had predisposition to digestive ADRs (P = 0.037) but was a protective factor for VPA-associated weight gain (P = 0.013). Ten key genes related to digestive ADRs and weight gain induced by VPA were identified by network pharmacological analysis and mainly involved in “GABAergic synaptic signaling”, “GABA receptor signaling”, and “taste transduction” pathways/processes through enrichment analysis. Conclusion This study revealed that GABRG2 variation exerted a predictable role in the efficacy and safety of VPA treatment for Chinese children with epilepsy.
Collapse
Affiliation(s)
- Jieluan Lu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hanbing Xia
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| | - Wenzhou Li
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| | - Xianhuan Shen
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Huijuan Guo
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| | - Jianping Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiaomei Fan
- Department of Pharmacy, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, People's Republic of China
| |
Collapse
|
14
|
Wang S, Zhang X, Zhou L, Wu Q, Han Y. Analysis of GABRG2 C588T polymorphism in genetic epilepsy and evaluation of GABRG2 in drug treatment. Clin Transl Sci 2021; 14:1725-1733. [PMID: 33650258 PMCID: PMC8504831 DOI: 10.1111/cts.12997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/11/2023] Open
Abstract
Epilepsy is a common disorder with complex inheritance, and its treatment is very unsatisfactory. An association between the GABRG2 C588T polymorphism and genetic generalized epilepsy has been studied by several genetic association studies. However, these results were inconsistent, and the role of GABRG2 in epilepsy treatment remains unknown. To evaluate the role of GABRG2 in epilepsy, we performed meta-analysis, expression quantitative trait loci analysis, protein-protein interaction analysis, and drug-gene interaction analysis. The combined results indicated that the GABRG2 C588T polymorphism was associated with genetic generalized epilepsy risk under dominant and allelic models (odds ratio [OR] = 1.25, 95% confidence interval [CI] = 1.02-1.54, p = 0.03, I2 = 0% and OR = 1.21, 95% CI = 1.03-1.42, p = 0.02, I2 = 20%, respectively). In the Asian population, we also found similar results under dominant and allelic models (OR = 1.93, 95% CI = 1.18-3.16, p = 0.009, I2 = 0% and OR = 1.69, 95% CI = 1.20-2.37, p = 0.003, I2 = 11%, respectively). We first found that the GABRG2 C588T polymorphism regulates GABRG2 expression in human brain tissues and that the protein encoded by GABRG2 interacts with targets of approved antiepileptic drugs (AEDs). Interestingly, we also found that GABRG2 itself interacts with approved AEDs. Taken together, the results indicate that the C588T polymorphism might alter the GABAA receptor by modulating GABRG2 gene expression, resulting in increased risk for epilepsy, and that GABRG2 may be a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Shitao Wang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xianjun Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liang Zhou
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Wu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanbing Han
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Al-Eitan LN, Al-Dalala IM, Elshammari AK, Khreisat WH, Nimiri AF, Alnaamneh AH, Aljamal HA, Alghamdi MA. Genetic Association of Epilepsy and Anti-Epileptic Drugs Treatment in Jordanian Patients. Pharmgenomics Pers Med 2020; 13:503-510. [PMID: 33116764 PMCID: PMC7584512 DOI: 10.2147/pgpm.s273125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose The aim of this study was to investigate the possible effects of single-nucleotide polymorphisms (SNPs) within SLC1A1, SLC6A1, FAM131B, GPLD1, F2, GABRG2, GABRA1, and CACNG5 genes on response to anti-epileptic drugs (AEDs) and the genetic predisposition of epilepsy in Jordanian patients. Patients and Methods A total of 299 healthy individuals and 296 pediatric patients from the Jordanian population were recruited. Blood samples are collected, and genotyping was performed using a custom platform array analysis. Results The SLC1A1 rs10815018 and FAM131B rs4236482 polymorphisms found to be associated with epilepsy susceptibility. Moreover, SLC1A1 rs10815018 and GPLD1 rs1126617 polymorphisms were associated with generalized epilepsy (GE), while FAM131B rs4236482 is associated with the focal phenotype. Regarding the therapeutic response, the genetic polymorphisms of FAM131B rs4236482, GABRA1 rs2279020, and CACNG5 rs740805 are conferred poor response (resistance) to AEDs. There was no linkage of GLPD1 haplotypes to epilepsy, its subtypes, and treatment responsiveness. Conclusion Our findings suggested that SLC1A1, FAM131B, and GPLD1 polymorphisms increasing the risk of generating epilepsy, while FAM131B, GABRA1, and CACNG5 variants may play a role in predicting drug response in patients with epilepsy (PWE).
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Islam M Al-Dalala
- Department of Blood Banking, King Hussein Medical Centre, Royal Medical Services, Amman, Jordan
| | - Afrah K Elshammari
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Wael H Khreisat
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Aseel F Nimiri
- Queen Rania Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Adan H Alnaamneh
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanan A Aljamal
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
16
|
Rawat C, Kukal S, Dahiya UR, Kukreti R. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation 2019; 16:197. [PMID: 31666079 PMCID: PMC6822425 DOI: 10.1186/s12974-019-1592-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting nearly 1% of the world population. Despite decades of extensive research on understanding its underlying mechanism and developing the pharmacological treatment, very little is known about the biological alterations leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ujjwal Ranjan Dahiya
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India.
| |
Collapse
|
17
|
Naimo GD, Guarnaccia M, Sprovieri T, Ungaro C, Conforti FL, Andò S, Cavallaro S. A Systems Biology Approach for Personalized Medicine in Refractory Epilepsy. Int J Mol Sci 2019; 20:E3717. [PMID: 31366017 PMCID: PMC6695675 DOI: 10.3390/ijms20153717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 02/01/2023] Open
Abstract
Epilepsy refers to a common chronic neurological disorder that affects all age groups. Unfortunately, antiepileptic drugs are ineffective in about one-third of patients. The complex interindividual variability influences the response to drug treatment rendering the therapeutic failure one of the most relevant problems in clinical practice also for increased hospitalizations and healthcare costs. Recent advances in the genetics and neurobiology of epilepsies are laying the groundwork for a new personalized medicine, focused on the reversal or avoidance of the pathophysiological effects of specific gene mutations. This could lead to a significant improvement in the efficacy and safety of treatments for epilepsy, targeting the biological mechanisms responsible for epilepsy in each individual. In this review article, we focus on the mechanism of the epilepsy pharmacoresistance and highlight the use of a systems biology approach for personalized medicine in refractory epilepsy.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Teresa Sprovieri
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Carmine Ungaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
18
|
Sahni S, Tickoo M, Gupta R, Vaswani M, Ambekar A, Grover T, Sharma A. Association of serotonin and GABA pathway gene polymorphisms with alcohol dependence: A preliminary study. Asian J Psychiatr 2019; 39:169-173. [PMID: 29673739 DOI: 10.1016/j.ajp.2018.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Alcohol dependence (AD), characterized by profound disruptions in specific circuits of the brain is influenced by both environmental, which play a significant role in developing addiction and genetic factors, which make some individuals more susceptible to disruptions. Various polymorphisms in the neurotransmitter genes are reported to increase the risk of developing dependence. The present study aimed to identify association of serotonin and GABA polymorphisms with AD in Indian subjects. METHOD The study group comprised of 141 AD cases recruited as per DSM IV TR criteria from the outpatient Department of Psychiatry and 110 volunteers from the general population. Clinical and family history was noted and 5 ml blood drawn for genetic studies. Polymorphisms 5-HTTLPR and STin2 of serotonin and rs2279020 and rs3219151 of the GABA pathway were analyzed and results correlated with age at first use quantity consumed, duration of use, dependence and age at onset of dependence. RESULTS The marker frequencies were similar between cases and controls except for rs3219151. 5-HTTLPR was significantly associated with high AUDIT scores and alcohol intake (p < 0.0001), GABAA rs2279020 and rs3219151 with age at first use (p < 0.0001); rs2279020 with higher AUDIT score (p = 0.002) and rs3219151 with quantity (p = 0.0001). High frequency of GABRA6 rs3219151 TT genotype in AD and its association with lower age at first use, higher intake/day, and higher duration of dependence appears to confer risk. CONCLUSIONS This preliminary study, though on a smaller sample size, suggests an association of 5-HTTLPR and GABAA receptor polymorphisms with AD in our population.
Collapse
Affiliation(s)
- Shweta Sahni
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi, 110029, India.
| | - Mayanka Tickoo
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi, 110029, India.
| | - Ranjan Gupta
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi, 110029, India.
| | - Meera Vaswani
- National Drug Dependence Treatment Center, Department of Psychiatry, AIIMS, New Delhi, 110029, India; University of Minnesota, USA.
| | - Atul Ambekar
- National Drug Dependence Treatment Center, Department of Psychiatry, AIIMS, New Delhi, 110029, India.
| | - Tripti Grover
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi, 110029, India.
| | - Arundhati Sharma
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi, 110029, India.
| |
Collapse
|
19
|
Lack of association between valproic acid response and polymorphisms of its metabolism, transport, and receptor genes in children with focal seizures. Neurol Sci 2018; 40:523-528. [DOI: 10.1007/s10072-018-3681-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023]
|
20
|
Association of GABAA Receptor Gene with Epilepsy Syndromes. J Mol Neurosci 2018; 65:141-153. [PMID: 29785705 DOI: 10.1007/s12031-018-1081-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
GABA has always been an inviting target in the etiology and treatment of epilepsy. The GABRA1, GABRG2, and GABRD genes provide instructions for making α1, ϒ2, and δ subunits of GABAA receptor protein respectively. GABAA is considered as one of the most important proteins and has found to play an important role in many neurological disorders. We explored the association of GABAA receptor gene mutation/SNPs in JME and LGS patients in Indian population. A total of 100 epilepsy syndrome patients (50 JME and 50 LGS) and 100 healthy control subjects were recruited and analyzed by AS-PCR and RFLP-PCR techniques. In our study, GABRA1 965 C > A mutation and 15 A > G polymorphism gene may play an important role in modulating the drug efficacy in LGS patients. The GABRA1 15 A > G polymorphism may also play an important role in the susceptibility of LGS and the inheritance of GG genotype of this polymorphism may provide an increased risk of development of LGS. The GABRG2 588 C > T polymorphism may decrease the duration of seizures in JME patients. The GABRD 659 G > A polymorphism may play an important role in the susceptibility of JME and LGS and this polymorphism may also increase the duration of postictal period in JME patients but may decrease the duration of seizure in LGS patients.
Collapse
|
21
|
Feng W, Mei S, Zhu L, Yu Y, Yang W, Gao B, Wu X, Zhao Z, Fang F. Effects of UGT2B7, SCN1A and CYP3A4 on the therapeutic response of sodium valproate treatment in children with generalized seizures. Seizure 2018; 58:96-100. [PMID: 29679912 DOI: 10.1016/j.seizure.2018.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/11/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022] Open
Abstract
PURPOSE This study aims to evaluate the associations between genetic polymorphisms and the effect of sodium valproate (VPA) therapy in children with generalized seizures. METHODS A total of 174 children with generalized seizures on VPA therapy were enrolled. Steady-state trough plasma concentrations of VPA were analyzed. Seventy-six single nucleotide polymorphisms involved in the absorption, metabolism, transport, and target receptor of VPA were identified, and their associations with the therapeutic effect (seizure reduction) were evaluated using logistic regression adjusted by various influence factors. RESULTS rs7668282 (UGT2B7, T > C, OR = 2.67, 95% CI: 1.19 to 5.91, P = 0.017) was more prevalent in drug-resistant patients than drug-responsive patients. rs2242480 (CYP3A4, C > T, OR = 0.27, 95% CI: 0.095 to 0.79, P = 0.017) and rs10188577 (SCN1A, T > C, OR = 0.40, 95% CI: 0.17 to 0.94, P = 0.035) were more prevalent in drug-responsive patients compared to drug-resistant patients. CONCLUSION In children with generalized seizures on VPA therapy, polymorphisms of UGT2B7, CYP3A4, and SCN1A genes were associated with seizure reduction. Larger studies are warranted to corroborate the results.
Collapse
Affiliation(s)
- Weixing Feng
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China; Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, China
| | - Leting Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yazhen Yu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weili Yang
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Baoqin Gao
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaojuan Wu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, China.
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
22
|
Wu G, Yu J, Wang L, Ren S, Zhang Y. PKC/CREB pathway mediates the expressions of GABA A receptor subunits in cultured hippocampal neurons after low-Mg 2+ solution treatment. Epilepsy Res 2018; 140:155-161. [PMID: 29414524 DOI: 10.1016/j.eplepsyres.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/08/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the potential effects of the PKC/CREB pathway on the expressions of GABAA receptor subunits α1, γ2, and δ in cultured hippocampal neurons using a model of epilepsy that employed conditions of low magnesium (Mg2+). METHODS A total of 108 embryonic rats at the age of 18 embryonic days (E18)prepared from adult female SD rats were used as experimental subjects. Primary rat hippocampal cultures were prepared from the embryonic 18 days rats. The cultured hippocampal neurons were then treated with artificial cerebrospinal fluid containing low Mg2+ solutions to generate a low Mg2+ model of epilepsy. The low Mg2+ stimulation lasted for 3 h and then returned to in maintenance medium for 20 h. The changes of the GABAA receptor subunit α1, γ2, δ were observed by blocking or activating the function of the CREB. The quantification of the GABAA receptor subunit α1, γ2, δ and the CREB were determined by a qRT-PCR and a Western blot method. RESULTS After the neurons were exposed to a low-Mg2+ solution for 3 h, GABAA receptor mRNA expression markedly increased compared to the control, and then gradually decreased. In contrast, CREB mRNA levels exhibited a dramatic down-regulation 3 h after terminating low-Mg2+ treatment, and then peaked at 9 h. Western blot analyses verified that staurosporine suppressed CREB phosphorylation (p-CREB). The mRNA expression of GABAA receptor subunit α1 increased only in the presence of staurosporine, whereas the expressions of subunits γ2 and δ significantly increased in the presence of either KG-501 or staurosporine. Furthermore, phorbol 12-myristate 13-acetate (PMA) decreased the expressions of GABAA subunits α1, γ2, and δ when administered alone. However, the administration of either KG-501 or staurosporine reversed the inhibitory effects of PMA. CONCLUSIONS The PKC/CREB pathway may negatively regulate the expressions of GABAA receptor subunits α1, γ2, and δ in cultured hippocampal neurons in low Mg2+ model of epilepsy.
Collapse
Affiliation(s)
- Guofeng Wu
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China.
| | - Jinpeng Yu
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China
| | - Likun Wang
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China
| | - Siying Ren
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China
| | - Yixia Zhang
- Guizhou Centre for Disease Control and Prevention, Guiyang City, 550004, PR China
| |
Collapse
|
23
|
Butilă AT, Zazgyva A, Sin AI, Szabo ER, Tilinca MC. GABRG2 C588T gene polymorphisms might be a predictive genetic marker of febrile seizures and generalized recurrent seizures: a case-control study in a Romanian pediatric population. Arch Med Sci 2018; 14:157-166. [PMID: 29379546 PMCID: PMC5778423 DOI: 10.5114/aoms.2016.63739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/14/2016] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION This case-control study aimed to assess two single nucleotide polymorphisms of the gene encoding the GABRG2 protein - GABRG2 (3145 G>A) and GABRG2 rs 211037 Asn196Asn (C588T) - in a cohort of pediatric patients from Romania, and evaluate their possible impact on drug-resistant forms of generalized epilepsy and recurrent febrile seizures. MATERIAL AND METHODS One hundred and fourteen children with idiopathic generalized epilepsy (group 1) or febrile seizures (group 2) were compared to 153 controls. Peripheral blood samples were assessed using polymerase chain reaction-restriction fragment length polymorphism analysis, with results interpreted based on the disappearance of a restriction site in the C allele (122 bp) compared to the T allele (100 bp + 22 bp). RESULTS A significant association was found with the TT homozygous genotype and T allele for both febrile seizures and epilepsy for the C588T locus, while GABRG2 G>A 3145 showed no significant association with any type of seizure. The TT homozygous genotype of GABRG2 Asn196Asn polymorphism was more frequent in patients with a history of febrile seizures (p = 0.0001), without a significant association identified for GABRG2-G>A 3145. Composite analysis showed associations with epilepsy for CC-AG (p = 0.02) and CT-AG (p = 0.007) with the CC-AA combination as reference. CONCLUSIONS C588T polymorphism of the GABRG2 gene might be a predictive genetic marker in triggering febrile convulsions. GABRG2 rs211037 TT homozygotes and T allele variants have an increased risk for developing febrile seizures. Recurrent crises and repeated episodes of seizures are more frequent in the GABRG2 Asn196Asn TT genotype polymorphism, with a 45 and 8 times higher risk of developing idiopathic generalized epilepsy and recurrent febrile seizures, respectively.
Collapse
Affiliation(s)
- Anamaria Todoran Butilă
- Department of Genetics, University of Medicine and Pharmacy of Târgu-Mureş, Târgu-Mureş, Romania
| | - Ancuta Zazgyva
- Department of Cell and Molecular Biology, University of Medicine and Pharmacy of Târgu-Mureş, Târgu-Mureş, Romania
| | - Anca Ileana Sin
- Department of Cell and Molecular Biology, University of Medicine and Pharmacy of Târgu-Mureş, Târgu-Mureş, Romania
| | - Elisabeta Racoș Szabo
- Department of Psychiatry, University of Medicine and Pharmacy of Târgu-Mureş, Târgu-Mureş, Romania
| | - Mariana Cornelia Tilinca
- Department of Cell and Molecular Biology, University of Medicine and Pharmacy of Târgu-Mureş, Târgu-Mureş, Romania
| |
Collapse
|
24
|
Chouchi M, Kaabachi W, Klaa H, Tizaoui K, Turki IBY, Hila L. Relationship between ABCB1 3435TT genotype and antiepileptic drugs resistance in Epilepsy: updated systematic review and meta-analysis. BMC Neurol 2017; 17:32. [PMID: 28202008 PMCID: PMC5311838 DOI: 10.1186/s12883-017-0801-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/19/2017] [Indexed: 12/28/2022] Open
Abstract
Background Antiepileptic drugs (AEDs) are effective medications available for epilepsy. However, many patients do not respond to this treatment and become resistant. Genetic polymorphisms may be involved in the variation of AEDs response. Therefore, we conducted an updated systematic review and a meta-analysis to investigate the contribution of the genetic profile on epilepsy drug resistance. Methods We proceeded to the selection of eligible studies related to the associations of polymorphisms with resistance to AEDs therapy in epilepsy, published from January 1980 until November 2016, using Pubmed and Cochrane Library databases. The association analysis was based on pooled odds ratios (ORs) and 95% confidence intervals (CIs). Results From 640 articles, we retained 13 articles to evaluate the relationship between ATP-binding cassette sub-family C member 1 (ABCB1) C3435T polymorphism and AEDs responsiveness in a total of 454 epileptic AEDs-resistant cases and 282 AEDs-responsive cases. We found a significant association with an OR of 1.877, 95% CI 1.213–2.905. Subanalysis by genotype model showed a more significant association between the recessive model of ABCB1 C3435T polymorphism (TT vs. CC) and the risk of AEDs resistance with an OR of 2.375, 95% CI 1.775–3.178 than in the dominant one (CC vs. TT) with an OR of 1.686, 95% CI 0.877–3.242. Conclusion Our results indicate that ABCB1 C3435T polymorphism, especially TT genotype, plays an important role in refractory epilepsy. As genetic screening of this genotype may be useful to predict AEDs response before starting the treatment, further investigations should validate the association.
Collapse
Affiliation(s)
- Malek Chouchi
- Department of Genetic, Tunis El Manar University, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia. .,Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia.
| | - Wajih Kaabachi
- Division of Histology and Immunology Division, Department of Basic Sciences, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Hedia Klaa
- Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Kalthoum Tizaoui
- Division of Histology and Immunology Division, Department of Basic Sciences, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Ilhem Ben-Youssef Turki
- Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Lamia Hila
- Department of Genetic, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| |
Collapse
|
25
|
Effects of UGT1A6 and GABRA1 on Standardized Valproic Acid Plasma Concentrations and Treatment Effect in Children With Epilepsy in China. Ther Drug Monit 2016; 38:738-743. [DOI: 10.1097/ftd.0000000000000337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Fricke-Galindo I, Ortega-Vázquez A, Monroy-Jaramillo N, Dorado P, Jung-Cook H, Peñas-Lledó E, LLerena A, López-López M. Allele and genotype frequencies of genes relevant to anti-epileptic drug therapy in Mexican-Mestizo healthy volunteers. Pharmacogenomics 2016; 17:1913-1930. [PMID: 27790929 DOI: 10.2217/pgs-2016-0078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM To determine allele and genotype frequencies of genes influencing anti-epileptic drug therapy in Mexican-Mestizo (MM) healthy volunteers, and to evaluate whether these are different from those reported for other populations. SUBJECTS & METHODS Thirty-nine variants of CYP3A5, EPHX1, NR1I2, HNF4A, UGT1A1, UGT2B7, ABCC2, RALBP1, SCN1A, SCN2A and GABRA1 were genotyped in 300 MM healthy volunteers. RESULTS All studied alleles were presented in MM, except for seven UGT1A1 variants (*6-8, 14, 15, 27 and 29). Allele and genotype frequencies showed interethnic variations when compared with European, Asian and African populations. Allele frequencies of greater than 30% were observed in ten genes. CONCLUSION The results presented regarding the frequencies and interethnic differences of these polymorphisms should be taken into account for future pharmacogenetic studies of anti-epileptic drugs in MM patients with epilepsy.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- Doctorate in Biological & Health Sciences, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Alberto Ortega-Vázquez
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- Department of Neurogenetics & Molecular Biology, National Institute of Neurology & Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Pedro Dorado
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Servicio Extremeño de Salud, Badajoz, Spain
| | - Helgi Jung-Cook
- Department of Pharmacy, Chemistry Faculty, National Autonomous University of Mexico, Mexico City, Mexico.,Department of Neuropharmacology, National Institute of Neurology & Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Eva Peñas-Lledó
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Servicio Extremeño de Salud, Badajoz, Spain
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Servicio Extremeño de Salud, Badajoz, Spain
| | - Marisol López-López
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| |
Collapse
|
27
|
Baghel R, Grover S, Kaur H, Jajodia A, Rawat C, Srivastava A, Kushwaha S, Agarwal R, Sharma S, Kukreti R. Evaluating the Role of Genetic Variants on first-line antiepileptic drug response in North India: Significance of SCN1A and GABRA1 Gene Variants in Phenytoin Monotherapy and its Serum Drug Levels. CNS Neurosci Ther 2016; 22:740-57. [PMID: 27245092 DOI: 10.1111/cns.12570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022] Open
Abstract
AIM The present study aimed to evaluate association of genetic variants on drug response and therapy optimization parameters in patients treated with first-line antiepileptic drugs (AEDs). Genetic variants from ion channels, their functionally related genes, and synaptic vesicle cycle (SVC) genes with a potential role in epilepsy pathophysiology were thus prioritized. METHODS A total of 12 genes from ion channels and related gene set and seven genes from SVC comprising 155 SNPs were genotyped and evaluated with drug response, dose levels, and drug levels in 408 patients with epilepsy. RESULTS Both GABRA1 and SCN1A variants showed haplotypic and diplotypic associations in response to phenytoin (PHT). Diplotype analysis of GABRA1 variants revealed association of rs12658835|rs7735530 (AG/AG) (P-valuecorrected = 0.034, OR = 3.75, 95% CI = 1.36-11.05) and rs12658835|rs7735530|rs7732641|rs2279020 (AGCA/AGCA) (P-valuecorrected = 0.035, OR = 2.48, 95% CI = 0.96-6.41) with recurrent seizures. SCN1A haplotype rs6432860|rs3812718 (AC: P-valuecorrected = 0.022, OR = 2.72, 95% CI = 1.39-5.35) and diplotype (AC/AC: P-valuecorrected = 0.034, OR = 6.42, 95% CI = 1.10-65.76) were further observed to be associated with recurrent seizures. With respect to therapy optimization parameters, we observed significantly lower dose-adjusted drug levels at maximum dose of PHT in patients carrying AC/AC diplotype (P-value = 0.021). CONCLUSION The results further substantiate the role of GABRA1 in PHT mode of action and contribution of SCN1A in response and therapy optimization with PHT monotherapy.
Collapse
Affiliation(s)
- Ruchi Baghel
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Sandeep Grover
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India.,Department of Paediatrics, Division of Pneumonology-Immunology, Charité University Medical Centre, Berlin, Germany
| | - Harpreet Kaur
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ajay Jajodia
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Chitra Rawat
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ankit Srivastava
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Suman Kushwaha
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Rachna Agarwal
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Sangeeta Sharma
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Ritushree Kukreti
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| |
Collapse
|
28
|
Lee PC, Yang YY, Lin MW, Hou MC, Huang CS, Lee KC, Wang YW, Hsieh YC, Huang YH, Chu CJ, Lin HC. Benzodiazepine-associated hepatic encephalopathy significantly increased healthcare utilization and medical costs of Chinese cirrhotic patients: 7-year experience. Dig Dis Sci 2014; 59:1603-16. [PMID: 24482035 DOI: 10.1007/s10620-013-3021-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/30/2013] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND OBJECTIVES In cirrhosis, hypersensitivity to benzodiazepines (BZD) and precipitating hepatic encephalopathy (HE) have been reported. The aim of this study was to evaluate the safety, economic impact and modifiable factors that are associated with the excess risk of BZD-associated HE in cirrhotic patients. METHODS Between July 2005 and March 2012, 1,612 Chinese cirrhotic patients with and without using long-t 1/2-BZD or short-t 1/2-BZD were enrolled and followed up for 6 months. RESULTS Among BZD users, the per-person HE-related healthcare utilization and medical costs were found to have progressively increased from 2005 to 2012. Cirrhotic BZD users had a higher percentage of smoking, alcohol drinking, simultaneous consumption of non-BZD drugs, and had a higher incidence of non-cirrhotic chronic illness than non-BZD users. Multivariate analysis indicated that hypoalbuminemia (<3 g/dL), long-acting (t 1/2 > 12-h), high-dosage (>1.5 defined daily dose equivalents) and long-duration (>2-months) BZD use, carrier of variant genotypes (AG + GG) of GABRA 1 (rs2290732) and having the wild genotype (TT) of GABRG 2 (rs211037) were significant predictors of the development of BZD-associated HE in cirrhotic patients. Additionally, synergistic effects of the above significant predictors on BZD-associated HE risk could be identified. CONCLUSIONS Our study confirms the clinical and economic impact of BZD-associated HE in cirrhotic BZD-users. Accordingly, extra caution is needed when treating cirrhotic BZD users with the above risk factors in order to avoid the BZD-associated HE in cirrhotic patients.
Collapse
Affiliation(s)
- Pei-Chang Lee
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hung CC, Chen PL, Huang WM, Tai JJ, Hsieh TJ, Ding ST, Hsieh YW, Liou HH. Gene-wide tagging study of the effects of common genetic polymorphisms in the α subunits of the GABA(A) receptor on epilepsy treatment response. Pharmacogenomics 2014; 14:1849-56. [PMID: 24236484 DOI: 10.2217/pgs.13.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM We aimed to identify the effect of SNPs in the α-subunits of GABAA receptors on epilepsy treatment outcomes by using a gene-wide tagging method. MATERIALS & METHODS There were 720 epileptic patients included in the present study. A total of 136 tagging SNPs in GABRA1, GABRA2, GABRA3, GABRA4, GABRA5 and GABRA6 were genotyped by Illumina(®)GoldenGate(®) Genotyping platform. Clinical information, such as prescribed antiepileptic drugs, height, weight, epilepsy syndrome classification, etiology, number of attacks, renal function and liver function were collected. The associations between SNPs and epilepsy treatment outcomes were analyzed using SAS(®) version 9.1.3. Both multivariate logistic regression and multifactor dimensionality reduction analyses were performed. RESULTS The results of single gene effects did not remain significant after Bonferroni's corrections. Further multivariate logistic regression and multifactor dimensionality reduction analyses of interactions between these genes showed that under adjustment of clinical factors, the epilepsy treatment outcomes were significantly associated with the genotype combinations of GABRA1 rs6883877, GABRA2 rs511310 and GABRA3 rs4828696 (p < 0.0001; adjusted r(2) = 0.149). CONCLUSION Our results indicated that genetic variants in the α subunits of GABA(A) receptors may interactively affect the treatment responses of antiepileptic drugs. Further replication using an independent sample collection would be essential to confirm our findings.
Collapse
Affiliation(s)
- Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan and Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Saghazadeh A, Mastrangelo M, Rezaei N. Genetic background of febrile seizures. Rev Neurosci 2014; 25:129-61. [PMID: 24399675 DOI: 10.1515/revneuro-2013-0053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 12/05/2013] [Indexed: 11/15/2022]
Abstract
Febrile seizures (FSs) occur in children older than 1 month and without prior afebrile seizures in the absence of a central nervous system infection or acute electrolyte imbalance. Their pathogenesis is multifactorial. The most relevant familial studies evidence an occurrence rate ranging from 10% to 46% and median recurrence rate of 36% in children with positive familial history for FS. The main twin studies demonstrated a higher concordance rate in monozygotic twins with FS than in dizygotic ones. Linkage studies have proposed 11 chromosomal locations responsible to FS attributed to FEB1 to FEB11. Population-based association studies have shown at least one positive association for 14 of 41 investigated genes with FS. The proinflammatory cytokine interleukin 1β (IL-1β) was the most investigated and also gene associated with susceptibility to FS. A possible role in the overlapping of epilepsy and FS was found for 16 of 36 investigated genes. SCN1A, IL-1β, CHRNA4, and GABRG2 were the most commonly involved genes in this context. The genetic background of FS involves the regulation of different processes, including individual and familial susceptibility, modulation of immune response, and neuronal excitability and interactions with exogenous agents such as viruses.
Collapse
|
31
|
Baghel R, Jajodia A, Grover S, Kukreti R. Research Highlights: Highlights from the latest articles focusing on a new gene set for better drug response prediction of epilepsy patients. Pharmacogenomics 2014; 15:581-6. [DOI: 10.2217/pgs.14.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ruchi Baghel
- Genomics & Molecular Medicine Unit, Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), Mall Road, Delhi 110 007, India
| | - Ajay Jajodia
- Genomics & Molecular Medicine Unit, Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), Mall Road, Delhi 110 007, India
| | - Sandeep Grover
- Genomics & Molecular Medicine Unit, Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), Mall Road, Delhi 110 007, India
| | - Ritushree Kukreti
- Genomics & Molecular Medicine Unit, Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), Mall Road, Delhi 110 007, India
| |
Collapse
|
32
|
Jaramillo NM, Galindo IF, Vázquez AO, Cook HJ, LLerena A, López ML. Pharmacogenetic potential biomarkers for carbamazepine adverse drug reactions and clinical response. ACTA ACUST UNITED AC 2014; 29:67-79. [DOI: 10.1515/dmdi-2013-0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 11/15/2022]
|
33
|
GABRG2, rs211037 is associated with epilepsy susceptibility, but not with antiepileptic drug resistance and febrile seizures. Pharmacogenet Genomics 2013; 23:605-10. [DOI: 10.1097/fpc.0000000000000000] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Salam SMA, Rahman HMA, Karam RA. GABRG2 gene polymorphisms in Egyptian children with simple febrile seizures. Indian J Pediatr 2012; 79:1514-6. [PMID: 21983990 DOI: 10.1007/s12098-011-0564-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
Mutations in the gamma-aminobutyric acid type A receptor (GABRG2) gene have been associated with generalized epilepsy, childhood absence epilepsy and febrile seizures. In the present study the authors investigated the association of polymorphism of the GABRG2 with simple febrile seizures (FS) in Egyptian children. Polymorphism at GABRG2 (SNP211037, Asn196Asn), on chromosome 5q33 were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 100 Egyptian children with simple FS, and 120 healthy controls. The frequency of CC genotype of GABRG2 gene was significantly higher in children with simple FS compared to healthy children (p ≤ 0.0001). The C allele of GABRG2 was associated with increased risk for developing simple FS (OR: 2.15. 95% CI, 1.4-3.2. p ≤ 0.0001). The present findings suggested that the GABRG2 (SNP211037)-C allele could be a suitable genetic marker for prediction of susceptibility to simple FS in Egyptian children.
Collapse
Affiliation(s)
- Sanaa M Abdel Salam
- Department of Pediatrics, Faculty of medicine, Zagazig University, Zagazig, Egypt.
| | | | | |
Collapse
|
35
|
Clément Y, Prut L, Saurini F, Mineur YS, Le Guisquet AM, Védrine S, Andres C, Vodjdani G, Belzung C. Gabra5-gene haplotype block associated with behavioral properties of the full agonist benzodiazepine chlordiazepoxide. Behav Brain Res 2012; 233:474-82. [PMID: 22677273 DOI: 10.1016/j.bbr.2012.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 01/09/2023]
Abstract
The gabra5 gene is associated with pharmacological properties (myorelaxant, amnesic, anxiolytic) of benzodiazepines. It is tightly located (0.5 cM) close to the pink-eyed dilution (p) locus which encodes for fur color on mouse chromosome 7. We tested the putative role of the gabra5 gene in pharmacological properties of the full non specific agonist chlordiazepoxide (CDP), using behavioral and molecular approaches in mutated p/p mice and wild type F2 from crosses between two multiple markers inbred strain ABP/Le and C57BL/6By strain. From our results, using rotarod, light-dark box, elevated maze and radial arm maze tests, we demonstrate that p/p mice are more sensitive than WT to the sensory motor, anxiolytic and amnesic effect of CDP. This is associated with the presence of a haplotypic block on the murine chromosome 7 and with an up regulation of gabra5 mRNAs in hippocampi of p/p F2 mice.
Collapse
Affiliation(s)
- Y Clément
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, 75651 Paris Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Grover S, Kukreti R. Research Highlights: Highlights from the latest articles on pharmacogenetic studies of antiepileptic drugs. Pharmacogenomics 2012; 13:519-24. [DOI: 10.2217/pgs.12.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sandeep Grover
- Genomics & Molecular Medicine Unit, Institute of Genomics & Integrative Biology (Council of Scientific & Industrial Research), Mall Road, Delhi 110 007, India
| | - Ritushree Kukreti
- Genomics & Molecular Medicine Unit, Institute of Genomics & Integrative Biology (Council of Scientific & Industrial Research), Mall Road, Delhi 110 007, India
| |
Collapse
|
37
|
Ponnala S, Chaudhari JR, Jaleel MA, Bhiladvala D, Kaipa PR, Das UN, Hasan Q. Role of MDR1 C3435T and GABRG2 C588T gene polymorphisms in seizure occurrence and MDR1 effect on anti-epileptic drug (phenytoin) absorption. Genet Test Mol Biomarkers 2012; 16:550-7. [PMID: 22239287 DOI: 10.1089/gtmb.2011.0225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS To assess the role of MDR1 and gamma-aminobutyric acid receptor-gamma 2 sub unit (GABRG2) gene polymorphism in seizure susceptibility in generalized seizure (GS) and febrile seizure (FS) patients and to evaluate MDR1 C3435T gene polymorphism's role in absorption of the anti-epileptic drug, phenytoin (PHT) in a cohort of patients. METHODS One hundred twenty-seven cases of seizure (86 GS and 41 FS) patients were analyzed for MDR1 C3435T and GABRG2 C588T gene polymorphisms using restriction fragment length polymorphism-polymerase chain reaction. Serum PHT levels were analyzed. RESULTS The T allele of MDR1 C3435T and GABRG2 C588T gene polymorphism was higher in GS in the Indian population compared with controls. From the data in GS, CT and TT genotype carriers of the MDR1 gene and TT genotype carriers of the GABRG2 gene had more recurrent seizures compared with others. MDR1 T allele carriers in the seizure reoccurrence (SR) group of GS and FS were high compared with the well-controlled seizure group (with no seizures after treatment). TT genotype carriers in SR group were high in FS (with regard to MDR1 gene polymorphism) and GS (with regard to GABRG2 gene polymorphism) compared with a well-controlled seizure group. MDR1 C3435T gene polymorphism affects serum PHT levels (p<0.015). Association of dose PHT ratio and genotype groups of MDR1 C3435T gene polymorphism showed a significant association (p<0.05). MDR1*CC genotype was more common in cases with low serum PHT levels.In addition, it is evident that CT and TT genotype carriers have a high percentage of SR with elevated serum PHT levels. CONCLUSIONS Our results show that the MDR1 3435T and GABRG2 588T alleles play a role in seizure occurrence. Moreover, the MDR1 3435T allele also affects PHT absorption. We suggest MDR1 C3435T and GABRG2 C588T genotyping would be of value in order to lower the risk of concentration-dependent drug toxicity and for better patient management.
Collapse
Affiliation(s)
- Shivani Ponnala
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kumari R, Lakhan R, Garg RK, Kalita J, Misra UK, Mittal B. Pharmacogenomic association study on the role of drug metabolizing, drug transporters and drug target gene polymorphisms in drug-resistant epilepsy in a north Indian population. INDIAN JOURNAL OF HUMAN GENETICS 2011; 17 Suppl 1:S32-40. [PMID: 21747585 PMCID: PMC3125053 DOI: 10.4103/0971-6866.80357] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND: In epilepsy, in spite of the best possible medications and treatment protocols, approximately one-third of the patients do not respond adequately to anti-epileptic drugs. Such interindividual variations in drug response are believed to result from genetic variations in candidate genes belonging to multiple pathways. MATERIALS AND METHODS: In the present pharmacogenetic analysis, a total of 402 epilepsy patients were enrolled. Of them, 128 were diagnosed as multiple drug-resistant epilepsy and 274 patients were diagnosed as having drug-responsive epilepsy. We selected a total of 10 candidate gene polymorphisms belonging to three major classes, namely drug transporters, drug metabolizers and drug targets. These genetic polymorphism included CYP2C9 c.430C>T (*2 variant), CYP2C9 c.1075 A>C (*3 variant), ABCB1 c.3435C>T, ABCB1c.1236C>T, ABCB1c.2677G>T/A, SCN1A c.3184 A> G, SCN2A c.56G>A (p.R19K), GABRA1c.IVS11 + 15 A>G and GABRG2 c.588C>T. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods, and each genotype was confirmed via direct DNA sequencing. The relationship between various genetic polymorphisms and responsiveness was examined using binary logistic regression by SPSS statistical analysis software. RESULTS: CYP2C9 c.1075 A>C polymorphism showed a marginal significant difference between drug resistance and drug-responsive patients for the AC genotype (Odds ratio [OR] = 0.57, 95% confidence interval [CI] = 0.32–1.00; P = 0.05). In drug transporter, ABCB1c.2677G>T/A polymorphism, allele A was associated with drug-resistant phenotype in epilepsy patients (P = 0.03, OR = 0.31, 95% CI = 0.10-0.93). Similarly, the variant allele frequency of SCN2A c.56 G>A single nucleotide polymorphism was significantly higher in drug-resistant patients (P = 0.03; OR = 1.62, 95% CI = 1.03, 2.56). We also observed a significant difference at the genotype as well as allele frequencies of GABRA1c.IVS11 + 15 A > G polymorphism in drug-resistant patients for homozygous GG genotype (P = 0.03, OR = 1.84, 95% CI = 1.05–3.23) and G allele (P = 0.02, OR = 1.43, 95% CI = 1.05–1.95). CONCLUSIONS: Our results showed that pharmacogenetic variants have important roles in epilepsy at different levels. It may be noted that multi-factorial diseases like epilepsy are also regulated by various other factors that may also be considered in the future.
Collapse
Affiliation(s)
- Ritu Kumari
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
39
|
Kumari R, Lakhan R, Kalita J, Garg RK, Misra UK, Mittal B. Potential role of GABAA receptor subunit; GABRA6, GABRB2 and GABRR2 gene polymorphisms in epilepsy susceptibility and pharmacotherapy in North Indian population. Clin Chim Acta 2011; 412:1244-8. [PMID: 21420396 DOI: 10.1016/j.cca.2011.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND GABA(A) receptors influence the susceptibility to seizures, and variations in the receptor genes can contribute to antiepileptic drug resistance also. METHODS We investigated the possible associations of single nucleotide polymorphisms (SNPs) present in GABRA6 c. 1512 T>C, GABRB2 c. 1412 C>T, and GABRR2 c. IVS2C>G genes of GABA(A) receptors in epilepsy susceptibility and drug resistance in northern Indian patients with epilepsy. After screening a total of 202 healthy controls and 401 epilepsy patients were enrolled in study. The genotyping was done by PCR-RFLP methods. RESULTS The GABRA6 c. 1512 T>C, polymorphism was conferring risk for epilepsy susceptibility for TC (P=0.018), CC (P=0.0001) genotype and for C allele (P=0.0002). Another polymorphism GABRB2 c. 1412 C>T was also conferring high risk for epilepsy susceptibility CT (P=0.012), TT (P=0.778) genotype and for variant T allele (P=0.034) but was not associated with drug resistance. No association was found with epilepsy susceptibility or with drug resistance in case of GABRR2 c. IVS2C>G gene polymorphism. CONCLUSION Overall, our findings suggest significant involvement of alpha (GABRA6) and beta (GABRB2) subunits of GABA(A) receptor in epilepsy susceptibility in north Indian population.
Collapse
Affiliation(s)
- Ritu Kumari
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India
| | | | | | | | | | | |
Collapse
|