1
|
Wang L, Ma J, Che X. A novel SLC20A2 mutation presenting with paroxysmal kinesigenic dyskinesia and epilepsy in a Chinese patient: a case report. Acta Neurol Belg 2023; 123:2379-2382. [PMID: 36701080 PMCID: PMC10682148 DOI: 10.1007/s13760-023-02182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Affiliation(s)
- Lijun Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jianfang Ma
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiangqian Che
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Lu M, Feng R, Zhang C, Xiao Y, Yin C. Identifying Novel Drug Targets for Epilepsy Through a Brain Transcriptome-Wide Association Study and Protein-Wide Association Study with Chemical-Gene-Interaction Analysis. Mol Neurobiol 2023; 60:5055-5066. [PMID: 37246165 PMCID: PMC10415436 DOI: 10.1007/s12035-023-03382-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
Epilepsy is a severe neurological condition affecting 50-65 million individuals worldwide that can lead to brain damage. Nevertheless, the etiology of epilepsy remains poorly understood. Meta-analyses of genome-wide association studies involving 15,212 epilepsy cases and 29,677 controls of the ILAE Consortium cohort were used to conduct transcriptome-wide association studies (TWAS) and protein-wide association studies (PWAS). Furthermore, a protein-protein interaction (PPI) network was generated using the STRING database, and significant epilepsy-susceptible genes were verified using chip data. Chemical-related gene set enrichment analysis (CGSEA) was performed to determine novel drug targets for epilepsy. TWAS analysis identified 21,170 genes, of which 58 were significant (TWASfdr < 0.05) in ten brain regions, and 16 differentially expressed genes were verified based on mRNA expression profiles. The PWAS identified 2249 genes, of which 2 were significant (PWASfdr < 0.05). Through chemical-gene set enrichment analysis, 287 environmental chemicals associated with epilepsy were identified. We identified five significant genes (WIPF1, IQSEC1, JAM2, ICAM3, and ZNF143) that had causal relationships with epilepsy. CGSEA identified 159 chemicals that were significantly correlated with epilepsy (Pcgsea < 0.05), such as pentobarbital, ketone bodies, and polychlorinated biphenyl. In summary, we performed TWAS, PWAS (for genetic factors), and CGSEA (for environmental factors) analyses and identified several epilepsy-associated genes and chemicals. The results of this study will contribute to our understanding of genetic and environmental factors for epilepsy and may predict novel drug targets.
Collapse
Affiliation(s)
- Mengnan Lu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China
| | - Ruoyang Feng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China
| | - Chenglin Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China.
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China.
| |
Collapse
|
3
|
Chen SY, Ho CJ, Lu YT, Lin CH, Lan MY, Tsai MH. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int J Mol Sci 2023; 24:10886. [PMID: 37446066 DOI: 10.3390/ijms241310886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Primary familial brain calcification (PFBC), also known as Fahr's disease, is a rare inherited disorder characterized by bilateral calcification in the basal ganglia according to neuroimaging. Other brain regions, such as the thalamus, cerebellum, and subcortical white matter, can also be affected. Among the diverse clinical phenotypes, the most common manifestations are movement disorders, cognitive deficits, and psychiatric disturbances. Although patients with PFBC always exhibit brain calcification, nearly one-third of cases remain clinically asymptomatic. Due to advances in the genetics of PFBC, the diagnostic criteria of PFBC may need to be modified. Hitherto, seven genes have been associated with PFBC, including four dominant inherited genes (SLC20A2, PDGFRB, PDGFB, and XPR1) and three recessive inherited genes (MYORG, JAM2, and CMPK2). Nevertheless, around 50% of patients with PFBC do not have pathogenic variants in these genes, and further PFBC-associated genes are waiting to be identified. The function of currently known genes suggests that PFBC could be caused by the dysfunction of the neurovascular unit, the dysregulation of phosphate homeostasis, or mitochondrial dysfunction. An improved understanding of the underlying pathogenic mechanisms for PFBC may facilitate the development of novel therapies.
Collapse
Affiliation(s)
- Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| |
Collapse
|
4
|
Monfrini E, Arienti F, Rinchetti P, Lotti F, Riboldi GM. Brain Calcifications: Genetic, Molecular, and Clinical Aspects. Int J Mol Sci 2023; 24:ijms24108995. [PMID: 37240341 DOI: 10.3390/ijms24108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Many conditions can present with accumulation of calcium in the brain and manifest with a variety of neurological symptoms. Brain calcifications can be primary (idiopathic or genetic) or secondary to various pathological conditions (e.g., calcium-phosphate metabolism derangement, autoimmune disorders and infections, among others). A set of causative genes associated with primary familial brain calcification (PFBC) has now been identified, and include genes such as SLC20A2, PDGFB, PDGFRB, XPR1, MYORG, and JAM2. However, many more genes are known to be linked with complex syndromes characterized by brain calcifications and additional neurologic and systemic manifestations. Of note, many of these genes encode for proteins involved in cerebrovascular and blood-brain barrier functions, which both represent key anatomical structures related to these pathological phenomena. As a growing number of genes associated with brain calcifications is identified, pathways involved in these conditions are beginning to be understood. Our comprehensive review of the genetic, molecular, and clinical aspects of brain calcifications offers a framework for clinicians and researchers in the field.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | - Federica Arienti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | - Paola Rinchetti
- Columbia University Irving Medical Center, Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology and Neurology, New York, NY 10032, USA
| | - Francesco Lotti
- Columbia University Irving Medical Center, Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology and Neurology, New York, NY 10032, USA
| | - Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY 10017, USA
| |
Collapse
|
5
|
Sun H, Cao Z, Gao R, Li Y, Chen R, Du S, Ma T, Wang J, Xu X, Liu JY. Severe brain calcification and migraine headache caused by SLC20A2 and PDGFRB heterozygous mutations in a five-year-old Chinese girl. Mol Genet Genomic Med 2021; 9:e1670. [PMID: 33793087 PMCID: PMC8172206 DOI: 10.1002/mgg3.1670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Abstract
Background Primary familial brain calcification (PFBC) is a rare inheritable neurodegenerative disease characterized by bilateral calcification in different brain regions and by a range of neuropsychiatric symptoms. Six causative genes of PFBC (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified. Methods Sanger sequencing was used to identify the causative genes associated with PFBC in this study. Results We describe the first PFBC case with both SLC20A2 and PDGFRB heterozygous mutations. Notably, this patient with the digenic mutation (who was only 5 years old) showed severe brain calcification and migraine, whereas the patient's parents, who each carried a heterozygous mutation in SLC20A2 or PDGFRB, exhibited varying degrees of brain calcification but were clinically asymptomatic. Conclusion This case highlights the digenic influences on the characteristics of PFBC patients.
Collapse
Affiliation(s)
- Hao Sun
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhijian Cao
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ruixi Gao
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yulei Li
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Rui Chen
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shiyue Du
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Tingbin Ma
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Junhan Wang
- Department of Clinical Laboratory, Hospital of HUST, Wuhan, China
| | - Xuan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Yu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Woo KA, Yoo D, Lee JY, Kim MJ, Seong MW, Park SS, Jeon B. SLC20A2 mutation manifesting as very late-onset orofacial dyskinesia. Neurol Sci 2021; 42:2561-2564. [PMID: 33452934 DOI: 10.1007/s10072-020-04976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Kyung Ah Woo
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, South Korea.,Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Dallah Yoo
- Department of Neurology, Kyung Hee University Medical Center, Seoul, South Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, South Korea.
| | - Man Jin Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,Rare Disease Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
7
|
Coppola A, Hernandez-Hernandez L, Balestrini S, Krithika S, Moran N, Hale B, Cordivari C, Sisodiya SM. Cortical myoclonus and epilepsy in a family with a new SLC20A2 mutation. J Neurol 2020; 267:2221-2227. [PMID: 32274582 PMCID: PMC7359151 DOI: 10.1007/s00415-020-09821-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Idiopathic basal ganglia calcification (IBGC) or primary familial brain calcification is a rare genetic condition characterized by an autosomal dominant inheritance pattern and the presence of bilateral calcifications in the basal ganglia, thalami, cerebellum and cerebral subcortical white matter. The syndrome is genetically and phenotypically heterogeneous. Causal mutations have been identified in four genes: SLC20A2, PDGFRB, PDGFB and XPR1. A variety of progressive neurological and psychiatric symptoms have been described, including cognitive impairment, movement disorders, bipolar disorder, chronic headaches and migraine, and epilepsy. Here we describe a family with a novel SLC20A2 mutation mainly presenting with neurological symptoms including cortical myoclonus and epilepsy. While epilepsy, although rare, has been reported in patients with IBGC associated with SLC20A2 mutations, cortical myoclonus seems to be a new manifestation.
Collapse
Affiliation(s)
- Antonietta Coppola
- Epilepsy Centre, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Laura Hernandez-Hernandez
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- The Chalfont Centre for Epilepsy, Chalfont-St-Peter, Bucks, UK
| | - S Krithika
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- The Chalfont Centre for Epilepsy, Chalfont-St-Peter, Bucks, UK
| | - Nicholas Moran
- East Kent Hospitals University Foundation Trust, Ethelbert Road, Canterbury, Kent, UK
| | - Blake Hale
- Department of Clinical Neurophysiology, UCL Queen Square Institute of Neurology, London, UK
| | - Carla Cordivari
- Department of Clinical Neurophysiology, UCL Queen Square Institute of Neurology, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
- The Chalfont Centre for Epilepsy, Chalfont-St-Peter, Bucks, UK.
| |
Collapse
|
8
|
Borges-Medeiros RL, de Oliveira JRM. Digenic Variants as Possible Clinical Modifier of Primary Familial Brain Calcification Patients. J Mol Neurosci 2019; 70:142-144. [PMID: 31768941 DOI: 10.1007/s12031-019-01430-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/03/2019] [Indexed: 02/08/2023]
Abstract
Primary familial brain calcification (PFBC), widely known as Fahr's disease, is a rare disorder caused by pathogenic variants in SLC20A2, PDGFB, PDGFRB, XPR1, or MYORG genes. It is characterized by ectopic brain calcification, mostly affecting basal ganglia, thalamus, and cerebellum. PFBC patients can present a wide spectrum of symptoms including cognitive, neuropsychiatric, and motor alterations. However, it is well established that PFBC individuals also present high clinical heterogeneity, though the genetic cause of this phenotypic is not understood. Recently, Wang et al. (Front Cell Neurosci. https://doi.org/10.3389/fncel.2019.00250, 2019) reported on the role of MEA6 gene in cerebellar development and motor performance, also citing that MEA6 might be linked to PFBC. A MEA6 variant was described in 2007 as a PFBC candidate gene in an American family. However, this family was later linked to the SLC20A2 gene discarding the MEA6 as a PFBC-gene and also some members were confirmed as phenocopy. Additionally, five independent studies have been shown that variants in a second gene, not related to PFBC, were identified in PFBC patients, promoting a complex and heterogeneous phenotype. Thus, further investigation is required to explain whether and how MEA6 contributes to the clinical presentation in this American family. Finally, this letter highlights the possible digenic influence on clinical heterogeneity of PFBC patients, and such a possibility might advance our understanding of PFBC phenotypes.
Collapse
Affiliation(s)
| | - João Ricardo Mendes de Oliveira
- Keizo Asami Laboratory, Universidade Federal de Pernambuco, Recife, Brazil. .,Neuropsychiatric Department, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil.
| |
Collapse
|
9
|
Donzuso G, Mostile G, Nicoletti A, Zappia M. Basal ganglia calcifications (Fahr's syndrome): related conditions and clinical features. Neurol Sci 2019; 40:2251-2263. [PMID: 31267306 PMCID: PMC6817747 DOI: 10.1007/s10072-019-03998-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Basal ganglia calcifications could be incidental findings up to 20% of asymptomatic patients undergoing CT or MRI scan. The presence of neuropsychiatric symptoms associated with bilateral basal ganglia calcifications (which could occur in other peculiar brain structures, such as dentate nuclei) identifies a clinical picture defined as Fahr's Disease. This denomination mainly refers to idiopathic forms in which no metabolic or other underlying causes are identified. Recently, mutations in four different genes (SLC20A2, PDGFRB, PDGFB, and XPR1) were identified, together with novel mutations in the Myogenic Regulating Glycosylase gene, causing the occurrence of movement disorders, cognitive decline, and psychiatric symptoms. On the other hand, secondary forms, also identified as Fahr's syndrome, have been associated with different conditions: endocrine abnormalities of PTH, such as hypoparathyroidism, other genetically determined conditions, brain infections, or toxic exposure. The underlying pathophysiology seems to be related to an abnormal calcium/phosphorus homeostasis and transportation and alteration of the blood-brain barrier.
Collapse
Affiliation(s)
- Giulia Donzuso
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giovanni Mostile
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Alessandra Nicoletti
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Mario Zappia
- Department "GF Ingrassia", Section Neuroscience, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| |
Collapse
|