1
|
Middlebrooks EH, Gupta V, Agarwal AK, Freund BE, Messina SA, Tatum WO, Sabsevitz DS, Feyissa AM, Mirsattari SM, Galan FN, Quinones-Hinojosa A, Grewal SS, Murray JV. Radiologic Classification of Hippocampal Sclerosis in Epilepsy. AJNR Am J Neuroradiol 2024; 45:1185-1193. [PMID: 38383054 PMCID: PMC11392372 DOI: 10.3174/ajnr.a8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Temporal lobe epilepsy is a common form of epilepsy that is often associated with hippocampal sclerosis (HS). Although HS is commonly considered a binary assessment in radiologic evaluation, it is known that histopathologic changes occur in distinct clusters. Some subtypes of HS only affect certain subfields, resulting in minimal changes to the overall volume of the hippocampus. This is likely a major reason why whole hippocampal volumetrics have underperformed versus expert readers in the diagnosis of HS. With recent advancements in MRI technology, it is now possible to characterize the substructure of the hippocampus more accurately. However, this is not consistently addressed in radiographic evaluations. The histologic subtype of HS is critical for prognosis and treatment decision-making, necessitating improved radiologic classification of HS. The International League Against Epilepsy (ILAE) has issued a consensus classification scheme for subtyping HS histopathologic changes. This review aims to explore how the ILAE subtypes of HS correlate with radiographic findings, introduce a grading system that integrates radiologic and pathologic reporting in HS, and outline an approach to detecting HS subtypes by using MRI. This framework will not only benefit current clinical evaluations, but also enhance future studies involving high-resolution MRI in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| | - Vivek Gupta
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| | - Amit K Agarwal
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| | - Brin E Freund
- Department of Neurology (B.E.F., W.O.T., A.M.F.), Mayo Clinic, Jacksonville, Florida
| | - Steven A Messina
- Department of Radiology (S.A.M.), Mayo Clinic, Rochester, Minnesota
| | - William O Tatum
- Department of Neurology (B.E.F., W.O.T., A.M.F.), Mayo Clinic, Jacksonville, Florida
| | - David S Sabsevitz
- Department of Psychiatry and Psychology (D.S.S.), Mayo Clinic, Jacksonville, Florida
| | - Anteneh M Feyissa
- Department of Neurology (B.E.F., W.O.T., A.M.F.), Mayo Clinic, Jacksonville, Florida
| | - Seyed M Mirsattari
- Departments of Clinical Neurological Sciences, Medical Imaging, Medical Biophysics, and Psychology (S.M.M.), University of Western Ontario, London, Ontario, Canada
| | - Fernando N Galan
- Department of Neurology (F.N.G.), Nemours Children's Health, Jacksonville, Florida
| | | | - Sanjeet S Grewal
- Department of Neurosurgery (A.Q.-H., S.S.G.), Mayo Clinic, Jacksonville, Florida
| | - John V Murray
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
2
|
Perera Molligoda Arachchige AS, Meuli S, Centini FR, Stomeo N, Catapano F, Politi LS. Evaluating the role of 7-Tesla magnetic resonance imaging in neurosurgery: Trends in literature since clinical approval. World J Radiol 2024; 16:274-293. [PMID: 39086607 PMCID: PMC11287432 DOI: 10.4329/wjr.v16.i7.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND After approval for clinical use in 2017, early investigations of ultra-high-field abdominal magnetic resonance imaging (MRI) have demonstrated its feasibility as well as diagnostic capabilities in neuroimaging. However, there are no to few systematic reviews covering the entirety of its neurosurgical applications as well as the trends in the literature with regard to the aforementioned application. AIM To assess the impact of 7-Tesla MRI (7T MRI) on neurosurgery, focusing on its applications in diagnosis, treatment planning, and postoperative assessment, and to systematically analyze and identify patterns and trends in the existing literature related to the utilization of 7T MRI in neurosurgical contexts. METHODS A systematic search of PubMed was conducted for studies published between January 1, 2017, and December 31, 2023, using MeSH terms related to 7T MRI and neurosurgery. The inclusion criteria were: Studies involving patients of all ages, meta-analyses, systematic reviews, and original research. The exclusion criteria were: Pre-prints, studies with insufficient data (e.g., case reports and letters), non-English publications, and studies involving animal subjects. Data synthesis involved standardized extraction forms, and a narrative synthesis was performed. RESULTS We identified 219 records from PubMed within our defined period, with no duplicates or exclusions before screening. After screening, 125 articles were excluded for not meeting inclusion criteria, leaving 94 reports. Of these, 2 were irrelevant to neurosurgery and 7 were animal studies, resulting in 85 studies included in our systematic review. Data were categorized by neurosurgical procedures and diseases treated using 7T MRI. We also analyzed publications by country and the number of 7T MRI facilities per country was also presented. Experimental studies were classified into comparison and non-comparison studies based on whether 7T MRI was compared to lower field strengths. CONCLUSION 7T MRI holds great potential in improving the characterization and understanding of various neurological and psychiatric conditions that may be neurosurgically treated. These include epilepsy, pituitary adenoma, Parkinson's disease, cerebrovascular diseases, trigeminal neuralgia, traumatic head injury, multiple sclerosis, glioma, and psychiatric disorders. Superiority of 7T MRI over lower field strengths was demonstrated in terms of image quality, lesion detection, and tissue characterization. Findings suggest the need for accelerated global distribution of 7T magnetic resonance systems and increased training for radiologists to ensure safe and effective integration into routine clinical practice.
Collapse
Affiliation(s)
| | - Sarah Meuli
- Faculty of Medicine, Humanitas University, Pieve Emanuele, Milan 20072, Italy
| | | | - Niccolò Stomeo
- Department of Anaesthesiology and Intensive Care, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
| | - Federica Catapano
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| |
Collapse
|
3
|
Kaestner E, Stasenko A, Schadler A, Roth R, Hewitt K, Reyes A, Qiu D, Bonilha L, Voets N, Hu R, Willie J, Pedersen N, Shih J, Ben-Haim S, Gross R, Drane D, McDonald CR. Impact of white matter networks on risk for memory decline following resection versus ablation in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 2024; 95:663-670. [PMID: 38212059 PMCID: PMC11187680 DOI: 10.1136/jnnp-2023-332682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND With expanding neurosurgical options in epilepsy, it is important to characterise each options' risk for postoperative cognitive decline. Here, we characterise how patients' preoperative white matter (WM) networks relates to postoperative memory changes following different epilepsy surgeries. METHODS Eighty-nine patients with temporal lobe epilepsy with T1-weighted and diffusion-weighted imaging as well as preoperative and postoperative verbal memory scores (prose recall) underwent either anterior temporal lobectomy (ATL: n=38) or stereotactic laser amygdalohippocampotomy (SLAH; n=51). We computed laterality indices (ie, asymmetry) for volume of the hippocampus and fractional anisotropy (FA) of two deep WM tracts (uncinate fasciculus (UF) and inferior longitudinal fasciculus (ILF)). RESULTS Preoperatively, left-lateralised FA of the ILF was associated with higher prose recall (p<0.01). This pattern was not observed for the UF or hippocampus (ps>0.05). Postoperatively, right-lateralised FA of the UF was associated with less decline following left ATL (p<0.05) but not left SLAH (p>0.05), while right-lateralised hippocampal asymmetry was associated with less decline following both left ATL and SLAH (ps<0.05). After accounting for preoperative memory score, age of onset and hippocampal asymmetry, the association between UF and memory decline in left ATL remained significant (p<0.01). CONCLUSIONS Asymmetry of the hippocampus is an important predictor of risk for memory decline following both surgeries. However, asymmetry of UF integrity, which is only severed during ATL, is an important predictor of memory decline after ATL only. As surgical procedures and pre-surgical mapping evolve, understanding the role of frontal-temporal WM in memory networks could help to guide more targeted surgical approaches to mitigate cognitive decline.
Collapse
Affiliation(s)
- Erik Kaestner
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Alena Stasenko
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Adam Schadler
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Rebecca Roth
- Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kelsey Hewitt
- Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anny Reyes
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Deqiang Qiu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Leonardo Bonilha
- Department of Neurology, University of South Carolina System, Columbia, South Carolina, USA
| | | | - Ranliang Hu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Jon Willie
- Neurosurgery, Washington University in St Louis, St Louis, Missouri, USA
| | | | - Jerry Shih
- Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Sharona Ben-Haim
- Neurosurgery, University of California, San Diego, La Jolla, California, USA
| | - Robert Gross
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel Drane
- Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Carrie R McDonald
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
- Psychiatry, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Suh PS, Park JE, Roh YH, Kim S, Jung M, Koo YS, Lee SA, Choi Y, Kim HS. Improving Diagnostic Performance of MRI for Temporal Lobe Epilepsy With Deep Learning-Based Image Reconstruction in Patients With Suspected Focal Epilepsy. Korean J Radiol 2024; 25:374-383. [PMID: 38528695 PMCID: PMC10973740 DOI: 10.3348/kjr.2023.0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/10/2023] [Accepted: 01/07/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE To evaluate the diagnostic performance and image quality of 1.5-mm slice thickness MRI with deep learning-based image reconstruction (1.5-mm MRI + DLR) compared to routine 3-mm slice thickness MRI (routine MRI) and 1.5-mm slice thickness MRI without DLR (1.5-mm MRI without DLR) for evaluating temporal lobe epilepsy (TLE). MATERIALS AND METHODS This retrospective study included 117 MR image sets comprising 1.5-mm MRI + DLR, 1.5-mm MRI without DLR, and routine MRI from 117 consecutive patients (mean age, 41 years; 61 female; 34 patients with TLE and 83 without TLE). Two neuroradiologists evaluated the presence of hippocampal or temporal lobe lesions, volume loss, signal abnormalities, loss of internal structure of the hippocampus, and lesion conspicuity in the temporal lobe. Reference standards for TLE were independently constructed by neurologists using clinical and radiological findings. Subjective image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were analyzed. Performance in diagnosing TLE, lesion findings, and image quality were compared among the three protocols. RESULTS The pooled sensitivity of 1.5-mm MRI + DLR (91.2%) for diagnosing TLE was higher than that of routine MRI (72.1%, P < 0.001). In the subgroup analysis, 1.5-mm MRI + DLR showed higher sensitivity for hippocampal lesions than routine MRI (92.7% vs. 75.0%, P = 0.001), with improved depiction of hippocampal T2 high signal intensity change (P = 0.016) and loss of internal structure (P < 0.001). However, the pooled specificity of 1.5-mm MRI + DLR (76.5%) was lower than that of routine MRI (89.2%, P = 0.004). Compared with 1.5-mm MRI without DLR, 1.5-mm MRI + DLR resulted in significantly improved pooled accuracy (91.2% vs. 73.1%, P = 0.010), image quality, SNR, and CNR (all, P < 0.001). CONCLUSION The use of 1.5-mm MRI + DLR enhanced the performance of MRI in diagnosing TLE, particularly in hippocampal evaluation, because of improved depiction of hippocampal abnormalities and enhanced image quality.
Collapse
Affiliation(s)
- Pae Sun Suh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - Yun Hwa Roh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seonok Kim
- Department of Clinical Epidemiology and Biostatics, University of Ulsan college of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Mina Jung
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yong Seo Koo
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Ahm Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yangsean Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
5
|
Lang M, Colby S, Ashby-Padial C, Bapna M, Jaimes C, Rincon SP, Buch K. An imaging review of the hippocampus and its common pathologies. J Neuroimaging 2024; 34:5-25. [PMID: 37872430 DOI: 10.1111/jon.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The hippocampus is a complex structure located in the mesial temporal lobe that plays a critical role in cognitive and memory-related processes. The hippocampal formation consists of the dentate gyrus, hippocampus proper, and subiculum, and its importance in the neural circuitry makes it a key anatomic structure to evaluate in neuroimaging studies. Advancements in imaging techniques now allow detailed assessment of hippocampus internal architecture and signal features that has improved identification and characterization of hippocampal abnormalities. This review aims to summarize the neuroimaging features of the hippocampus and its common pathologies. It provides an overview of the hippocampal anatomy on magnetic resonance imaging and discusses how various imaging techniques can be used to assess the hippocampus. The review explores neuroimaging findings related to hippocampal variants (incomplete hippocampal inversion, sulcal remnant and choroidal fissure cysts), and pathologies of neoplastic (astrocytoma and glioma, ganglioglioma, dysembryoplastic neuroepithelial tumor, multinodular and vacuolating neuronal tumor, and metastasis), epileptic (mesial temporal sclerosis and focal cortical dysplasia), neurodegenerative (Alzheimer's disease, progressive primary aphasia, and frontotemporal dementia), infectious (Herpes simplex virus and limbic encephalitis), vascular (ischemic stroke, arteriovenous malformation, and cerebral cavernous malformations), and toxic-metabolic (transient global amnesia and opioid-associated amnestic syndrome) etiologies.
Collapse
Affiliation(s)
- Min Lang
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha Colby
- Department of Neurosurgery, University of Utah Health, Salt Lake City, Utah, USA
| | | | - Monika Bapna
- School of Medicine, Georgetown University, Washington, DC, USA
| | - Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra P Rincon
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Karen Buch
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Rebsamen M, Jin BZ, Klail T, De Beukelaer S, Barth R, Rezny-Kasprzak B, Ahmadli U, Vulliemoz S, Seeck M, Schindler K, Wiest R, Radojewski P, Rummel C. Clinical Evaluation of a Quantitative Imaging Biomarker Supporting Radiological Assessment of Hippocampal Sclerosis. Clin Neuroradiol 2023; 33:1045-1053. [PMID: 37358608 PMCID: PMC10654177 DOI: 10.1007/s00062-023-01308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE To evaluate the influence of quantitative reports (QReports) on the radiological assessment of hippocampal sclerosis (HS) from MRI of patients with epilepsy in a setting mimicking clinical reality. METHODS The study included 40 patients with epilepsy, among them 20 with structural abnormalities in the mesial temporal lobe (13 with HS). Six raters blinded to the diagnosis assessed the 3T MRI in two rounds, first using MRI only and later with both MRI and the QReport. Results were evaluated using inter-rater agreement (Fleiss' kappa [Formula: see text]) and comparison with a consensus of two radiological experts derived from clinical and imaging data, including 7T MRI. RESULTS For the primary outcome, diagnosis of HS, the mean accuracy of the raters improved from 77.5% with MRI only to 86.3% with the additional QReport (effect size [Formula: see text]). Inter-rater agreement increased from [Formula: see text] to [Formula: see text]. Five of the six raters reached higher accuracies, and all reported higher confidence when using the QReports. CONCLUSION In this pre-use clinical evaluation study, we demonstrated clinical feasibility and usefulness as well as the potential impact of a previously suggested imaging biomarker for radiological assessment of HS.
Collapse
Affiliation(s)
- Michael Rebsamen
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Baudouin Zongxin Jin
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tomas Klail
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie De Beukelaer
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rike Barth
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Beata Rezny-Kasprzak
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Uzeyir Ahmadli
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Piotr Radojewski
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland.
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| |
Collapse
|
7
|
Aslam S, Rajeshkannan R, Sandya CJ, Sarma M, Gopinath S, Pillai A. Statistical asymmetry analysis of volumetric MRI and FDG PET in temporal lobe epilepsy. Epilepsy Behav 2022; 134:108810. [PMID: 35802989 DOI: 10.1016/j.yebeh.2022.108810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To analyze statistically derived threshold values of volumetric MRI and 18F fluorodeoxyglucose (FDG) PET asymmetry, independent of normative data, for non-invasive detection/exclusion of temporal lobe epilepsy (TLE). METHODS We retrospectively analyzed amygdalohippocampal volumetry and temporal FDG PET metabolism in 33 patients (age: 29.27 ± 8.56 years) who underwent surgery following Stereo-EEG implantation and had postsurgical seizure freedom lasting >12 months. The temporal lobe epilepsy group and the extratemporal lobe epilepsy (ETLE) group were compared. Percentage volume loss (PVL) was calculated from manually traced amygdalohippocampal volumetry whereas percentage metabolic loss (PML) was calculated from PET using amygdalohippocampal trace and temporal neocortical Brodmann areas (BA) template. RESULTS Receiver operating characteristic (ROC) curve analysis identified a cutoff hippocampal PVL of 4.21% as the minimum indicating probable hippocampal involvement in seizure onset, with sensitivity of 88.89% and the specificity of 100% (p < 0.001). Region of interest (ROI)-based PML values in PET imaging showed a significant correlation with the presence of TLE in the TLE group of patients and its absence in the ETLE group of patients. Region of interest curve analysis yielded PML cutoffs of 5.77% and 8.36%, respectively, for the hippocampus and BA 38 (temporopolar neocortex) to detect TLE with the sensitivity of 72.7% and specificity of 77.8%. CONCLUSION We describe statistical thresholds for asymmetry analysis of hippocampal volumetry and FDG PET to improve detection of TLE. These threshold parameters warrant further validation in prospective studies.
Collapse
Affiliation(s)
- Shameer Aslam
- Department of Neurology, Amrita Advanced Centre for Epilepsy, Amrita Institute of Medical Sciences & Research Center, Kochi, India
| | - Ramiah Rajeshkannan
- Department of Radiology, Amrita Advanced Centre for Epilepsy, Amrita Institute of Medical Sciences & Research Center, Kochi, India
| | - C J Sandya
- Department of Radiology, Amrita Advanced Centre for Epilepsy, Amrita Institute of Medical Sciences & Research Center, Kochi, India
| | - Manjit Sarma
- Department of Nuclear Medicine, Amrita Advanced Centre for Epilepsy, Amrita Institute of Medical Sciences & Research Center, Kochi, India
| | - Siby Gopinath
- Department of Neurology, Amrita Advanced Centre for Epilepsy, Amrita Institute of Medical Sciences & Research Center, Kochi, India
| | - Ashok Pillai
- Department of Neurosurgery, Amrita Advanced Centre for Epilepsy, Amrita Institute of Medical Sciences & Research Center, Kochi, India.
| |
Collapse
|
8
|
Hainc N, McAndrews MP, Valiante T, Andrade DM, Wennberg R, Krings T. Imaging in medically refractory epilepsy at 3 Tesla: a 13-year tertiary adult epilepsy center experience. Insights Imaging 2022; 13:99. [PMID: 35661273 PMCID: PMC9167324 DOI: 10.1186/s13244-022-01236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives MRI negative epilepsy has evolved through increased usage of 3 T and insights from surgically correlated studies. The goal of this study is to describe dedicated 3 T epilepsy MRI findings in medically refractory epilepsy (MRE) patients at a tertiary epilepsy center to familiarize radiologists with an updated spectrum and frequency of potential imaging findings in the adult MRE population. Methods Included were all patients with MRE admitted to the epilepsy monitoring unit who were discussed at weekly interdisciplinary imaging conferences at Toronto Western Hospital with MRI studies (3 T with dedicated epilepsy protocol) performed between January 2008 and January 2021. Lesion characterization was performed by two readers based on most likely imaging diagnosis in consensus. Lobes involved per case were recorded. Results A total of 738 patients (386 female; mean age 35 years, range 15–77) were included. A total of 262 patients (35.5%) were MRI negative. The most common imaging finding was mesial temporal sclerosis, seen in 132 patients (17.9%), followed by encephalomalacia and gliosis, either posttraumatic, postoperative, postischemic, or postinfectious in nature, in 79 patients (10.7%). The most common lobar involvement (either partially or uniquely) was temporal (341 cases, 58.6%). MRE patients not candidates for surgical resection were included in the study, as were newly described pathologies from surgically correlated studies revealing findings seen retrospectively on reported MRI negative exams (isolated enlargement of the amygdala, temporal pole white matter abnormality, temporal encephalocele). Conclusion This study provides an updated description of the spectrum of 3 T MRI findings in adult MRE patients from a tertiary epilepsy center.
Collapse
Affiliation(s)
- Nicolin Hainc
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada. .,Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Mary Pat McAndrews
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Taufik Valiante
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Danielle M Andrade
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Richard Wennberg
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Timo Krings
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Stasenko A, Kaestner E, Reyes A, Lalani SJ, Paul B, Hegde M, Helm JL, Ben-Haim S, McDonald CR. Association Between Microstructural Asymmetry of Temporal Lobe White Matter and Memory Decline After Anterior Temporal Lobectomy. Neurology 2022; 98:e1151-e1162. [PMID: 35058338 PMCID: PMC8935440 DOI: 10.1212/wnl.0000000000200047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Risk for memory decline is a substantial concern in patients with temporal lobe epilepsy (TLE) undergoing anterior temporal lobectomy (ATL). Although prior studies have identified associations between memory and integrity of white matter (WM) networks within the medial temporal lobe (MTL) preoperatively, we contribute a study examining whether microstructural asymmetry of deep and superficial WM networks within the MTL predicts postoperative memory decline. METHODS Patients with drug-resistant TLE were recruited from 2 epilepsy centers in a prospective longitudinal study. All patients completed preoperative T1 and diffusion-weighted MRI (DWI) as well as preoperative and postoperative neuropsychological testing. Preoperative fractional anisotropy (FA) of the WM directly beneath the neocortex (i.e., superficial WM [SWM]) and of deep WM tracts associated with memory were calculated. Asymmetry was calculated for hippocampal volume and FA of each WM tract or region and examined in linear and logistic regressions with preoperative to postoperative memory change as the primary outcome. RESULTS Data were analyzed from 42 patients with TLE (19 left TLE [LTLE], 23 right TLE [RTLE]) who underwent ATL. Leftward FA asymmetry of the entorhinal SWM was associated with decline on prose and associative recall in LTLE, whereas leftward FA asymmetry of the uncinate fasciculus (UNC) was associated with decline on prose recall only. After controlling for preoperative memory score and hippocampal volume, leftward FA asymmetry of the entorhinal SWM uniquely contributed to decline in both prose and associative recall (β = -0.46; SE 0.14 and β = -0.68; SE 0.22, respectively) and leftward FA asymmetry of the UNC uniquely contributed to decline in prose recall (β = -0.31; SE 0.14). A model combining asymmetry of hippocampal volume and entorhinal FA correctly classified memory outcomes in 79% of patients with LTLE for prose (area under the curve [AUC] 0.89; sensitivity 82%; specificity 75%) and 81% of patients for associative (AUC 0.79; sensitivity 83%; specificity 80%) recall. Entorhinal SWM asymmetry was the strongest predictor in both models. DISCUSSION Preoperative asymmetry of deep WM and SWM integrity within the MTL is a strong predictor of postoperative memory decline in TLE, suggesting that surgical decision-making may benefit from considering each patient's WM network adequacy and reserve in addition to hippocampal integrity. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that preoperative asymmetry of deep WM and SWM integrity within the MTL is a predictor of postoperative memory decline.
Collapse
Affiliation(s)
- Alena Stasenko
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Erik Kaestner
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Anny Reyes
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Sanam J Lalani
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Brianna Paul
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Manu Hegde
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Jonathan L Helm
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Sharona Ben-Haim
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA
| | - Carrie R McDonald
- From the Center for Multimodal Imaging and Genetics (A.S., E.K., A.R., C.R.M.) and Departments of Psychiatry (A.S., E.K., A.R., S.J.L., C.R.M.) and Neurosurgery (S.B.-H.), University of California, San Diego; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (A.R., C.R.M.); Department of Neurology (B.P., M.H.), University of California, San Francisco; and Department of Psychology (J.L.H.), San Diego State University, CA.
| |
Collapse
|
10
|
Classifying epilepsy pragmatically: Past, present, and future. J Neurol Sci 2021; 427:117515. [PMID: 34174531 PMCID: PMC7613525 DOI: 10.1016/j.jns.2021.117515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/31/2023]
Abstract
The classification of epilepsy is essential for people with epilepsy and their families, healthcare providers, physicians and researchers. The International League Against Epilepsy proposed updated seizure and epilepsy classifications in 2017, while another four-dimensional epilepsy classification was updated in 2019. An Integrated Epilepsy Classification system was proposed in 2020. Existing classifications, however, lack consideration of important pragmatic factors relevant to the day-to-day life of people with epilepsy and stakeholders. Despite promising developments, consideration of comorbidities in brain development, genetic causes, and environmental triggers of epilepsy remains largely user-dependent in existing classifications. Demographics of epilepsy have changed over time, while existing classification schemes exhibit caveats. A pragmatic classification scheme should incorporate these factors to provide a nuanced classification. Validation across disparate contexts will ensure widespread applicability and ease of use. A team-based approach may simplify communication between healthcare personnel, while an individual-centred perspective may empower people with epilepsy. Together, incorporating these elements into a modern but pragmatic classification scheme may ensure optimal care for people with epilepsy by emphasising cohesiveness among its myriad users. Technological advancements such as 7T MRI, next-generation sequencing, and artificial intelligence may affect future classification efforts.
Collapse
|
11
|
Zhao L, Zhang X, Luo Y, Hu J, Liang C, Wang L, Gao J, Qi X, Zhai F, Shi L, Zhu M. Automated detection of hippocampal sclerosis: Comparison of a composite MRI-based index with conventional MRI measures. Epilepsy Res 2021; 174:106638. [PMID: 33964793 DOI: 10.1016/j.eplepsyres.2021.106638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE This study aims to compare the performance of an MRI-based composite index (HSI) with conventional MRI-based measures in hippocampal sclerosis (HS) detection and postoperative outcome estimation. METHODS Seventy-two temporal lobe epilepsy (TLE) patients with pathologically confirmed HS and fifteen TLE patients without HS were included retrospectively. The T1-weighted and FLAIR images of these patients were processed with AccuBrain to quantify the hippocampal volume (HV) and the hippocampal FLAIR signal. The HSI index that considered both HV and hippocampal FLAIR signal was also calculated. Two experienced neuropathologists rated the HS severity with the resected tissue and reached an agreement for all cases. The asymmetry indices of the MRI measures were used to lateralize the sclerotic side, and the original MRI measures were applied to detect HS vs. normal hippocampi. Operating characteristic curve (ROC) analyses were performed for these predictions. We also investigated the sensitivity of the ipsilateral MRI measures in characterizing the pathological severity of HS and the associations of the MRI measures with postoperative outcomes (Engel class categories). RESULTS With the optimal cutoffs, the asymmetry indices of HSI and HV both achieved excellent performance in differentiating left vs. right HS (accuracy = 100 %), and the absolute value of the asymmetry index of HSI performed best in differentiating unilateral vs. bilateral HS (accuracy = 91.7 %). Regarding the detection of HS, HSI performed better in sensitivity (94.4 % vs. 87.5 %) while HV performed better in specificity (93.6 % vs. 89.4 %) when the contralateral site of unilateral HS and both sides of non-HS patients were considered as the normal reference, and HSI performed even better than HV when only both sides of non-HS patients were considered as the normal reference (AUC: 0.956 vs. 0.934, p = 0.038). The ipsilateral HSI presented the strongest association with the pathological rating of HS severity (r = 0.405, p < 0.001). None of the ipsilateral or contralateral MRI measures was associated with the postoperative outcomes. Among the asymmetry indices, only the absolute value of the asymmetry index of HV presented a significant association with the Engel classifications for the Year 2∼3 visit (r = -0.466, p = 0.004) or the latest visit with >1 year follow-up (r = -0.374, p = 0.003) while controlling for disease duration and follow-up duration. CONCLUSION The HSI index and HV presented comparable good performance in HS detection, and HSI may have better sensitivity than HV in differentiating pathological HS severity. Higher magnitude of HV dissymmetry may indicate better post-surgical outcomes for HS patients.
Collapse
Affiliation(s)
- Lei Zhao
- BrainNow Research Institute, Shenzhen, China
| | - Xufei Zhang
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China
| | - Yishan Luo
- BrainNow Research Institute, Shenzhen, China
| | - Jianxin Hu
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China
| | - Chenyang Liang
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China
| | - Lining Wang
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China
| | - Jie Gao
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China
| | - Xueling Qi
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, China
| | - Feng Zhai
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen, China; Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Mingwang Zhu
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China.
| |
Collapse
|
12
|
Abstract
Human neuroimaging has had a major impact on the biological understanding of epilepsy and the relationship between pathophysiology, seizure management, and outcomes. This review highlights notable recent advancements in hardware, sequences, methods, analyses, and applications of human neuroimaging techniques utilized to assess epilepsy. These structural, functional, and metabolic assessments include magnetic resonance imaging (MRI), positron emission tomography (PET), and magnetoencephalography (MEG). Advancements that highlight non-invasive neuroimaging techniques used to study the whole brain are emphasized due to the advantages these provide in clinical and research applications. Thus, topics range across presurgical evaluations, understanding of epilepsy as a network disorder, and the interactions between epilepsy and comorbidities. New techniques and approaches are discussed which are expected to emerge into the mainstream within the next decade and impact our understanding of epilepsies. Further, an increasing breadth of investigations includes the interplay between epilepsy, mental health comorbidities, and aberrant brain networks. In the final section of this review, we focus on neuroimaging studies that assess bidirectional relationships between mental health comorbidities and epilepsy as a model for better understanding of the commonalities between both conditions.
Collapse
Affiliation(s)
- Adam M. Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| | - Jerzy P. Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| |
Collapse
|
13
|
Park JE, Cheong EN, Jung DE, Shim WH, Lee JS. Utility of 7 Tesla Magnetic Resonance Imaging in Patients With Epilepsy: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:621936. [PMID: 33815251 PMCID: PMC8017213 DOI: 10.3389/fneur.2021.621936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
Objective: 7 Tesla magnetic resonance imaging (MRI) enables high resolution imaging and potentially improves the detection of morphologic abnormalities in patients with epilepsy. However, its added value compared with conventional 1.5T and 3.0T MRI is unclear. We reviewed the evidence for the use of 7 Tesla MRI in patients with epilepsy and compared the detection rate of focal lesions with clinical MRI. Methods: Clinical retrospective case studies were identified using the indexed text terms "epilepsy" AND "magnetic resonance imaging" OR "MR imaging" AND "7T" OR "7 Tesla" OR "7T" in Medline (2002-September 1, 2020) and Embase (1999-September 1, 2020). The study setting, MRI protocols, qualitative, and quantitative assessment were systematically reviewed. The detection rate of morphologic abnormalities on MRI was reported in each study in which surgery was used as the reference standard. Meta-analyses were performed using a univariate random-effects model in diagnostic performance studies with patients that underwent both 7T MRI and conventional MRI. Results: Twenty-five articles were included (467 patients and 167 healthy controls) consisting of 10 case studies, 10 case-control studies, 4 case series, and 1 cohort study. All studies included focal epilepsy; 12 studies (12/25, 48%) specified the disease etiology and 4 studies reported focal but non-lesional (MRI-negative on 1.5/3.0T) epilepsy. 7T MRI showed superior detection and delineation of morphologic abnormalities in all studies. In nine comparative studies, 7T MRI had a superior detection rate of 65% compared with the 22% detection rate of 1.5T or 3.0T. Significance: 7T MRI is useful for delineating morphologic abnormalities with a higher detection rate compared with conventional clinical MRI. Most studies were conducted using a case series or case study; therefore, a cohort study design with clinical outcomes is necessary. Classification of Evidence: Class IV Criteria for Rating Diagnostic Accuracy Studies.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - E-Nae Cheong
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Da Eun Jung
- Department of Pediatrics, Ajou University School of Medicine, Suwon, South Korea
| | - Woo Hyun Shim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pediatrics, Ajou University School of Medicine, Suwon, South Korea
| | - Ji Sung Lee
- Department of Statistics, College of Medicine, Ulsan University, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
14
|
Zhang Y, Dou W, Zuo Z, You H, Lv Y, Hou B, Shi L, Feng F. Brain volume and perfusion asymmetry in temporal lobe epilepsy with and without hippocampal sclerosis. Neurol Res 2020; 43:299-306. [PMID: 33320070 DOI: 10.1080/01616412.2020.1853988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objectives: To detect and compare the features of interictal perfusion and volume asymmetry between temporal lobe epilepsy (TLE) patients with and without hippocampal sclerosis (HS).Methods: Sixty-one TLE patients (mean age 28.4 ± 9.3 years; 28 female/33 male) with unilateral signs of HS (TLE-HS+) and 25 TLE patients (mean age 29.8 ± 8.0 years; 17 female/8 male) without HS (TLE-HS-) were included. Thirty healthy volunteers served as controls (mean age 26.0 ± 8.7 years; 22 female/8 male). Brain segmentation and volume calculation were performed. Quantitative cerebral blood flow (CBF) values were measured based on arterial spin labeling (ASL). The asymmetry indices (AIs) of volume and perfusion were calculated.Results: TLE-HS+ (adjusted P = 0.001) and TLE-HS- patients (adjusted P = 0.006) had significantly higher hippocampal perfusion AIs than controls. TLE-HS+ and TLE-HS- had similar hippocampal perfusion AIs (adjusted P = 1.00). TLE-HS+ had higher hippocampal volume AIs than TLE-HS- and controls (adjusted P < 0.001). TLE-HS- and controls had similar hippocampal volume AIs (adjusted P = 1.00). All (100%) TLE-HS+ patients had positive hippocampal perfusion or volume AIs. No significant correlation between the AIs of hippocampal perfusion and volume was found in both TLE-HS+(P = 0.894) and TLE-HS- (P = 0.106) patients. TLE-HS+ patients demonstrated more extensive whole-brain asymmetry of both perfusion and volume than TLE-HS- patients.Conclusion: TLE-HS+ and TLE-HS- patients have different patterns of whole-brain perfusion and volume asymmetry. Hippocampal perfusion asymmetry was revealed in both TLE-HS+ and TLE-HS- patients.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanchen Dou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhentao Zuo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuelei Lv
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,BrainNow Medical Technology Limited, Hong Kong Science and Technology Park, Hong Kong, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|