1
|
Bredewold OW, Moest WT, de Fijter JW, Meijers E, Bruchfeld A, Skov K, Svensson MHS, Chan J, Mjornstedt L, Sorensen SS, Fellstrom B, Feltkamp MCW, van Zonneveld AJ, Rotmans JI. Attenuation of Torque teno viral load over time in kidney transplantation recipients treated with calcineurin inhibitors is mitigated after conversion to belatacept. J Med Virol 2024; 96:e29905. [PMID: 39228322 DOI: 10.1002/jmv.29905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Torque Teno Virus (TTV) is a non-pathogenic anellovirus, highly prevalent in healthy populations. Variations in its viral load have been associated with states of diminished immunity, as occurs after organ transplantation. It is hypothesized that TTV-load might be used as a diagnostic tool to guide prescription and dosing of immunosuppressive drugs. Not much is known about the effects of combined immunosuppressive drugs on TTV replication in renal transplantation. Belatacept was introduced to counter side-effects of calcineurin inhibitors (CNI). It was never widely adopted, mainly because its association with increased risk of rejection. To investigate the differential effects of a regimen based on calcineurin inhibitors versus belatacept on TTV-loads, we measured TTV-levels in 105 patients from two randomized controlled trials in kidney transplant recipients (KTRs). We observed that time after transplantation was inversely related to TTV-levels of patients that remained on a CNI-containing regime, whereas this decline over time was diminished after conversion to belatacept. In addition, a correlation with tacrolimus-trough levels and age were found. Our study is the first report on the impact of conversion from CNI to belatacept on TTV-levels in KTR. In conclusion, the time-related decline in TTV-levels is mitigated after conversion from CNI to belatacept.
Collapse
Affiliation(s)
- O W Bredewold
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - W T Moest
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - J W de Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Department of Nephrology, Antwerp University Medical Center, Edegem, Belgium
| | - E Meijers
- Department of Medical Microbiology and Infection Control, Leiden University Center for Infectious diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - A Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - K Skov
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - M H S Svensson
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Nephrology, Akershus University Hospital, Lorenskog, Norway
| | - J Chan
- Department of Nephrology, Akershus University Hospital, Lorenskog, Norway
| | - L Mjornstedt
- Transplantation Institute, Sahlgrenska University Hospital, Goteborg, Sweden
| | - S S Sorensen
- Department of Nephrology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - B Fellstrom
- Department of Medical Science, Renal Unit, University Hospital, Uppsala, Sweden
| | - M C W Feltkamp
- Department of Medical Microbiology and Infection Control, Leiden University Center for Infectious diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - A J van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - J I Rotmans
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Gore EJ, Gard L, Niesters HGM, Van Leer Buter CC. Understanding torquetenovirus (TTV) as an immune marker. Front Med (Lausanne) 2023; 10:1168400. [PMID: 37384041 PMCID: PMC10296770 DOI: 10.3389/fmed.2023.1168400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/30/2023] Open
Abstract
Torquetenovirus (TTV), a small, single stranded anellovirus, is currently being explored as a marker of immunocompetence in patients with immunological impairment and inflammatory disorders. TTV has an extremely high prevalence and is regarded as a part of the human virome, the replication of which is controlled by a functioning immune system. The viral load of TTV in plasma of individuals is thought to reflect the degree of immunosuppression. Measuring and quantifying this viral load is especially promising in organ transplantation, as many studies have shown a strong correlation between high TTV loads and increased risk of infection on one side, and low TTV loads and an increased risk of rejection on the other side. As clinical studies are underway, investigating if TTV viral load measurement is superior for gauging antirejection therapy compared to medication-levels, some aspects nevertheless have to be considered. In contrast with medication levels, TTV loads have to be interpreted bearing in mind that viruses have properties including transmission, tropism, genotypes and mutations. This narrative review describes the potential pitfalls of TTV measurement in the follow-up of solid organ transplant recipients and addresses the questions which remain to be answered.
Collapse
|
3
|
Spezia PG, Focosi D, Baj A, Novazzi F, Ferrante FD, Carletti F, Minosse C, Matusali G, Maggi F. TTV and other anelloviruses: The astonishingly wide spread of a viral infection. ASPECTS OF MOLECULAR MEDICINE 2023; 1:None. [PMID: 37398508 PMCID: PMC10308510 DOI: 10.1016/j.amolm.2023.100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 07/04/2023]
Abstract
The broad family of viruses known as anelloviruses (AV) infects both humans and numerous animal species. They have a tiny, covalently closed single-stranded DNA genome and the astonishing capacity to infect a very high percentage of healthy and ill people with chronic infections that could last a lifetime. AV, and particularly the prototype Torquetenovirus, have established a successful interaction with the host's immune system and the rate at which they replicate is a gauge to measure overall immune function, even though many aspects of their life cycle and pathogenesis are still poorly understood.
Collapse
Affiliation(s)
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Federica Novazzi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - Fabrizio Carletti
- Laboratory of Virology and Biosafety Laboratories, National Institute of Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Claudia Minosse
- Laboratory of Virology and Biosafety Laboratories, National Institute of Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology and Biosafety Laboratories, National Institute of Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology and Biosafety Laboratories, National Institute of Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy
| |
Collapse
|
4
|
Redondo N, Rodríguez-Goncer I, Parra P, Albert E, Giménez E, Ruiz-Merlo T, López-Medrano F, San Juan R, González E, Sevillano Á, Andrés A, Navarro D, Aguado JM, Fernández-Ruiz M. Impact of polymorphisms in genes orchestrating innate immune responses on replication kinetics of Torque teno virus after kidney transplantation. Front Genet 2022; 13:1069890. [DOI: 10.3389/fgene.2022.1069890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Torque teno virus (TTV) DNAemia has been proposed as a surrogate marker of immunosuppression after kidney transplantation (KT), under the assumption that the control of viral replication is mainly exerted by T-cell-mediated immunity. However, Tthe impact on post-transplant TTV kinetics of single genetic polymorphisms (SNPs) in genes orchestrating innate responses remains unknown. We aimed to characterize the potential association between 14 of these SNPs and TTV DNA levels in a single-center cohort of KT recipients.Methods: Plasma TTV DNAemia was quantified by real-time PCR in 221 KT recipients before transplantation (baseline) and regularly through the first 12 post-transplant months. We performed genotyping of the following SNPs: CTLA4 (rs5742909, rs231775), TLR3 (rs3775291), TLR9 (rs5743836, rs352139), CD209 (rs735240, rs4804803), IFNL3 (rs12979860, rs8099917), TNF (rs1800629), IL10 (rs1878672, rs1800872), IL12B (rs3212227) and IL17A (rs2275913).Results: The presence of the minor G allele of CD209 (rs4804803) in the homozygous state was associated with undetectable TTV DNAemia at the pre-transplant assessment (adjusted odds ratio: 36.96; 95% confidence interval: 4.72–289.67; p-value = 0.001). After applying correction for multiple comparisons, no significant differences across SNP genotypes were observed for any of the variables of post-transplant TTV DNAemia analyzed (mean and peak values, areas under the curve during discrete periods, or absolute increments from baseline to day 15 and months 1, 3, 6 and 12 after transplantation).Conclusion: The minor G allele of CD209 (rs4804803) seems to exert a recessive protective effect against TTV infection in non-immunocompromised patients. However, no associations were observed between the SNPs analyzed and post-transplant kinetics of TTV DNAemia. These negative results would suggest that post-transplant TTV replication is mainly influenced by immunosuppressive therapy rather than by underlying genetic predisposition, reinforcing its clinical application as a biomarker of adaptive immunity.
Collapse
|
5
|
Studenic P, Bond G, Kerschbaumer A, Bécède M, Pavelka K, Karateev D, Stieger J, Puchner R, Mueller RB, Puchhammer-Stöckl E, Durechova M, Loiskandl M, Perkmann T, Olejarova M, Luchikhina E, Steiner CW, Bonelli M, Smolen JS, Aletaha D. Torque Teno Virus Quantification for Monitoring of Immunomodulation with Biological Compounds in the Treatment of Rheumatoid Arthritis. Rheumatology (Oxford) 2021; 61:2815-2825. [PMID: 34792562 DOI: 10.1093/rheumatology/keab839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Rheumatoid arthritis (RA) patients who fail to respond to methotrexate (MTX) can receive biologic disease-modifying antirheumatic drugs (bDMARDs). The Torque Teno Virus (TTV) is a potential novel candidate for monitoring of immunosuppression. We explore TTV in these patients and association with clinical response to bDMARDs. METHODS The BioBio Study is a multicentre randomized open-label trial, including RA patients with insufficient response to MTX. Patients were randomized to either TNFi (infliximab, INF), anti-IL-6 (tocilizumab, TCZ), CTLA4-Ig (abatacept, ABA) or anti-CD20 (rituximab, RTX) in addition to MTX. PCR was used to quantify TTV in the peripheral blood. RESULTS TTV was measured in 95 patients (INF, n = 23; TCZ, n = 22; ABA, n = 27; RTX; n = 23). TTV increased by a median of 4.5*104 copies/ml (c/ml; inter quartile range [IQR] 0-7.5*105) after 3 months. TTV levels at month 3 were associated with SDAI (p= 0.03) and CDAI response (p= 0.026) at month 6. A TTV cut-off level of 1.2*106 c/ml at month 3 had a positive likelihood ratio of 2.7 for prediction of SDAI85% response at month 6. CONCLUSION Our data suggest that TTV levels increase upon TNF, CD20 and co-stimulation blockade and associate with clinical response to bDMARDs in RA patients. TRIAL REGISTRATION ClinicalTrials.gov; https://clinicaltrials.gov; NCT01638715.
Collapse
Affiliation(s)
- Paul Studenic
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria.,Division of Rheumatology, Department of Medicine (Solna), Karolinska Institutet, Sweden
| | - Gregor Bond
- Division of Nephrology and Dialysis, Medical University of Vienna, Austria
| | - Andreas Kerschbaumer
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Manuel Bécède
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Karel Pavelka
- Institute of Rheumatology, Prague, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dmitry Karateev
- Department of Rheumatology, Moscow Regional Research and Clinical Institute (MONIKI), Russia
| | - Jutta Stieger
- 2nd Department of Medicine, Hietzing Hospital, Austria
| | | | - Ruediger B Mueller
- Cantonal Hospital Lucerne, Division of Rheumatology, Medical University Department, Rheumazentrum Ostschweiz St. Gallen, Switzerland
| | | | - Martina Durechova
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Michaela Loiskandl
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Martina Olejarova
- Institute of Rheumatology, Prague, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Elena Luchikhina
- Department of Rheumatology, Moscow Regional Research and Clinical Institute (MONIKI), Russia
| | - Carl-Walter Steiner
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Michael Bonelli
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Josef S Smolen
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Daniel Aletaha
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| |
Collapse
|
6
|
Pyöriä L, Valtonen M, Luoto R, Grönroos W, Waris M, Heinonen OJ, Ruuskanen O, Perdomo MF. Survey of Viral Reactivations in Elite Athletes: A Case-Control Study. Pathogens 2021; 10:666. [PMID: 34071724 PMCID: PMC8229584 DOI: 10.3390/pathogens10060666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise-induced immune perturbations have been proposed to increase susceptibility to viral infections. We investigated the replication of persisting viruses as indicators of immune function in elite cross-country skiers after ten months of sustained high-performance exercise. The viruses evaluated, nine human herpesviruses (HHVs) and torque teno virus (TTV), are typically restrained in health but replicate actively in immunosuppressed individuals. We collected sera from 27 Finnish elite cross-country skiers at the end of the competition's season and 27 matched controls who perform moderate exercise. We quantified all the HHVs and-TTV via highly sensitive qPCRs. To verify equal past exposures between the groups, we assessed the IgG antibody prevalences toward HHV-4 (Epstein-Barr virus, EBV) and HHV-5 (human cytomegalovirus, HCMV). We found equal TTV DNA prevalences in athletes (63%) and controls (63%) and loads with respective geometric means of 1.7 × 103 and 1.2 × 103 copies/mL of serum. Overall, the copy numbers were low and consistent with those of healthy individuals. Neither of the groups presented with herpesvirus viremia despite similar past exposures to HHVs (seroprevalences of EBV 70% vs. 78% and HCMV 52% vs. 44% in athletes and controls, respectively). We found no evidence of increased replication of persistent viruses in elite athletes, arguing against impaired viral immunity due to high-performance exercise.
Collapse
Affiliation(s)
- Lari Pyöriä
- Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
| | - Maarit Valtonen
- Research Institute for Olympics Sports, 40700 Jyväskylä, Finland;
| | - Raakel Luoto
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Wilma Grönroos
- Paavo Nurmi Centre and Unit of Health and Physical Activity, University of Turku, 20520 Turku, Finland; (W.G.); (O.J.H.)
| | - Matti Waris
- Institute of Biomedicine, University of Turku and Department of Clinical Microbiology, Turku University Hospital, 20520 Turku, Finland;
| | - Olli J. Heinonen
- Paavo Nurmi Centre and Unit of Health and Physical Activity, University of Turku, 20520 Turku, Finland; (W.G.); (O.J.H.)
| | - Olli Ruuskanen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Maria F. Perdomo
- Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
| |
Collapse
|
7
|
Application of metagenomic next-generation sequencing in the diagnosis and treatment guidance of Pneumocystis jirovecii pneumonia in renal transplant recipients. Eur J Clin Microbiol Infect Dis 2021; 40:1933-1942. [PMID: 33880744 PMCID: PMC8057919 DOI: 10.1007/s10096-021-04254-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
Pneumocystis jirovecii pneumonia (PJP) is difficult to be diagnosed, so this study explored if PJP could be diagnosed by metagenomic next-generation sequencing (mNGS) and if mNGS could guide the therapy of PJP. mNGS was successfully diagnosed 13 out of 14 PJP recipients with 11 through peripheral blood samples, verified by PCR. Ten non-PJP recipients were enrolled as the control group. Blood tests revealed a high β-D-glucan (BDG) level in all recipients with PJP during the hospitalization. Four (28.6%) of 14 PJP patients were infected with cytomegalovirus simultaneously, while 8 (57.1%) suffered from a combined infection caused by Torque teno virus. Five (35.7%) of 14 cases died of PJP or the subsequent bacteremias/bacterial pneumonia with a longer interval between the onset and diagnosis of/the available therapy against PJP than survival cases. Univariate analysis of characteristics between PJP and non-PJP recipients revealed that BDG assays was higher at the admission in PJP group (P =0.011). This present study supports the value of mNGS detection of blood sample in diagnosing PJP, which could assist clinical decision for therapy against PJ and improve outcome of PJP. The study also highlights the sensitivity of BDG assays. Cytomegalovirus and Torque teno virus infections often occur at the same time of PJP, thus can be alerts of PJP.
Collapse
|
8
|
Doberer K, Schiemann M, Strassl R, Haupenthal F, Dermuth F, Görzer I, Eskandary F, Reindl‐Schwaighofer R, Kikić Ž, Puchhammer‐Stöckl E, Böhmig GA, Bond G. Torque teno virus for risk stratification of graft rejection and infection in kidney transplant recipients-A prospective observational trial. Am J Transplant 2020; 20:2081-2090. [PMID: 32034850 PMCID: PMC7496119 DOI: 10.1111/ajt.15810] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 01/25/2023]
Abstract
The nonpathogenic and ubiquitous torque teno virus (TTV) is associated with immunosuppression in solid organ transplant recipients. Studies in kidney transplant patients proposed TTV quantification for risk stratification of graft rejection and infection. In this prospective trial (DRKS00012335) 386 consecutive kidney transplant recipients were subjected to longitudinal per-protocol monitoring of plasma TTV load by polymerase chain reaction for 12 months posttransplant. TTV load peaked at the end of month 3 posttransplant and reached steady state thereafter. TTV load after the end of month 3 was analyzed in the context of subsequent rejection diagnosed by indication biopsy and infection within the first year posttransplant, respectively. Each log increase in TTV load decreased the odds for rejection by 22% (odds ratio [OR] 0.78, 95% confidence interval [CI] 0.62-0.97; P = .027) and increased the odds for infection by 11% (OR 1.11, 95% CI 1.06-1.15; P < .001). TTV was quantified at a median of 14 days before rejection was diagnosed and 27 days before onset of infection, respectively. We defined a TTV load between 1 × 106 and 1 × 108 copies/mL as optimal range to minimize the risk for rejection and infection. These data support the initiation of an interventional trial assessing the efficacy of TTV-guided immunosuppression to reduce infection and graft rejection in kidney transplant recipients.
Collapse
Affiliation(s)
- Konstantin Doberer
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| | - Martin Schiemann
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| | - Robert Strassl
- Division of VirologyDepartment of Laboratory MedicineMedical University ViennaViennaAustria
| | - Frederik Haupenthal
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| | - Florentina Dermuth
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| | - Irene Görzer
- Center for VirologyMedical University ViennaViennaAustria
| | - Farsad Eskandary
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| | | | - Željko Kikić
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| | | | - Georg A. Böhmig
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| | - Gregor Bond
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| |
Collapse
|
9
|
Fernández-Ruiz M, López-Medrano F, Aguado JM. Predictive tools to determine risk of infection in kidney transplant recipients. Expert Rev Anti Infect Ther 2020; 18:423-441. [PMID: 32084326 DOI: 10.1080/14787210.2020.1733976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Infection represents a major complication after kidney transplantation (KT). Therapeutic drug monitoring is essentially the only approach for the adjustment of immunosuppression in current practice, with suboptimal results. The implementation of immune monitoring strategies may contribute to minimizing the risk of adverse events attributable to over-immunosuppression without compromising graft outcomes.Areas covered: The present review (based on PubMed/MEDLINE searches from database inception to November 2019) is focused on immune biomarkers with no antigen specificity (non-pathogen-specific), including serum levels of immunoglobulins and complement factors, peripheral blood lymphocyte subpopulations, soluble CD30, intracellular ATP production by stimulated CD4+ T-cells, and other cell-based immune assays. We also summarized recent advances in the use of replication kinetics of latent viruses to assess the functionality of T-cell immunity, with focus on the nonpathogenic anelloviruses. Finally, the composite risk scores reported in the literature are critically discussed.Expert opinion: Notable efforts have been made to develop an enlarging repertoire of immune biomarkers and prediction models, although most of them still lack technical standardization and external validation. Preventive interventions based on these tools (prolongation of prophylaxis, tapering of immunosuppression, or immunoglobulin replacement therapy in hypogammaglobulinemic patients) remain to be defined, ideally in the context of controlled trials.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (Imas12), Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (Imas12), Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de Salud Carlos III, Madrid, Spain.,School of Medicine, Universidad Complutense, Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (Imas12), Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de Salud Carlos III, Madrid, Spain.,School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|